Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 59(51): 23010-23014, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-32889757

RESUMEN

Cobalt(II) alkyl complexes supported by a monoanionic NNN pincer ligand are pre-catalysts for the regioselective hydroboration of terminal alkynes, yielding the Markovnikov products with α:ß-(E) ratios of up to 97:3. A cobalt(II) hydride and a cobalt(II) vinyl complex appear to determine the main reaction pathway. In a background reaction the highly reactive hydrido species specifically converts to a coordinatively unsaturated cobalt(I) complex which was found to re-enter the main catalytic cycle.

2.
Angew Chem Int Ed Engl ; 59(37): 15974-15977, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32453491

RESUMEN

A readily activated iron alkyl precatalyst effectively catalyzes the highly enantioselective hydroboration of N-alkyl imines. Employing a chiral bis(oxazolinylmethylidene)isoindoline pincer ligand, the asymmetric reduction of various acyclic N-alkyl imines provided the corresponding α-chiral amines in excellent yields and with up to >99 % ee. The applicability of this base metal catalytic system was further demonstrated with the synthesis of the pharmaceuticals Fendiline and Tecalcet.

3.
Chem Commun (Camb) ; 56(8): 1203-1206, 2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31904033

RESUMEN

A magnesium precatalyst for the highly enantioselective hydro-boration of C[double bond, length as m-dash]O bonds is reported. The mechanistic basis of the unprecedented selectivity of this transformation has been investi-gated experimentally by isolation of catalytic intermediates and theoretically by DFT calculations. The facile formation of a magnesium borohydride species is critical in overcoming competing pathways in the selectivity-determining insertion step.

4.
Chem Commun (Camb) ; 54(66): 9139-9142, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30059087

RESUMEN

Bis(oxazolinyldimethylmethyl)pyrrol (PdmBox) stereodirecting ligands provided the key to the chromium(ii)-catalysed highly enantioselective hydrosilylation of ketones. A rare square planar, chiral chromium(ii) alkyl complex was found to serve as a potent precatalyst for the reduction of a broad range of aryl alkyl and dialkyl ketone derivatives. The stereoelectronic preference of the open d4 shell of chromium(ii) firmly locks the molecular catalyst in a square planar geometry giving rise to two blocked quadrants of the coordination sphere. This earth-abundant base metal catalytic platform produces the corresponding chiral alcohols in excellent isolated yields with up to 98 %ee under mild reaction conditions (-40 °C to rt) and at low catalyst loadings (as low as 0.5 mol%).

5.
Angew Chem Int Ed Engl ; 57(32): 10231-10235, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-29939466

RESUMEN

A molecularly defined chiral boxmi iron alkyl complex catalyzes the hydroboration of various functionalized ketones and provides the corresponding chiral halohydrines, oxaheterocycles (oxiranes, oxetanes, tetrahydrofurans, and dioxanes) and amino alcohols with excellent enantioselectivities (up to >99 %ee) and conversion efficiencies at low catalyst loadings (as low as 0.5 mol %). Turnover frequencies of greater than 40000 h-1 at -30 °C highlight the activity of this earth-abundant metal catalyst which tolerates a large number of functional groups.

6.
J Am Chem Soc ; 140(29): 9244-9254, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-29944350

RESUMEN

A comprehensive experimental and computational mechanistic study of the highly enantioselective hydroboration of ketones catalyzed by a manganese(II) alkyl boxmi pincer complex is reported. The catalyst operates at low catalyst loadings (down to 0.01 mol %) under very mild conditions (typically -40 °C) and facilitates the reduction of both aryl alkyl and dialkyl ketones with excellent selectivity (up to >95%ee). Catalyst activation pathways were investigated, demonstrating that a manganese(II) hydride and a manganese(II) alkoxide species are part of the catalytic cycle and can be generated via σ-bond metathesis of the alkyl precursor with the borane or by alcoholysis. Extensive kinetic experiments based on a "one-pot sequential kinetic profiling" approach under various conditions in combination with kinetic simulations reveal that two catalytic cycles are effective with this earth-abundant base metal catalyst: (i) a minor MnH/borane-mediated insertion cycle, in which the subsequent, product-releasing metathesis step is rate determining ( k m = 0.076 s-1), giving a background reaction, which is zeroth order in substrate concentrations, and (ii) a major MnOR/borane-based alkoxide exchange process, leveraging the high-barrier metathesis via the affiliation to an insertion step. The latter features non-integer reaction orders in both reagents due to a combination of an adduct formation step ( k a = 2.12 M-1 s-1, k -a = 0.49 s-1) and a substrate insertion step of comparable rates ( k ai = 3.74 M-1 s-1). The kinetic findings are underpinned by high-level density functional theory calculations of the mechanism, control experiments, and kinetic isotope effect/Hammett/Eyring analysis in different concentration regimes. The study highlights the role of a rigorous mechanistic understanding of homogeneous catalytic processes in 3d metals for rational catalyst discovery and optimization.

7.
Angew Chem Int Ed Engl ; 56(29): 8393-8397, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28544219

RESUMEN

A manganese alkyl complex containing a chiral bis(oxazolinyl-methylidene)isoindoline pincer ligand is a precatalyst for a catalytic system of unprecedented activity and selectivity in the enantioselective hydroboration of ketones, thus producing preparatively useful chiral alcohols in excellent yields with up to greater than 99 % ee. It is applicable for both aryl alkyl and dialkyl ketone reduction under mild reaction conditions (TOF >450 h-1 at -40 °C). The earth-abundant base-metal catalyst operates at very low catalyst loadings (as low as 0.1 mol %) and with a high level of functional-group tolerance. There is evidence for the existence of two distinct mechanistic pathways for manganese-catalyzed hydride transfer and their role for enantiocontrol in the selectivity-determining step is presented.

8.
Beilstein J Org Chem ; 12: 846-853, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27340475

RESUMEN

We report the modular synthesis of three different types of neutral κ(2)-P,N-ligands comprising an imine and a phosphine binding site. These ligands were reacted with rhodium, iridium and palladium metal precursors and the structures of the resulting complexes were elucidated by means of X-ray crystallography. We observed that subtle changes of the ligand backbone have a significant influence on the binding geometry und coordination properties of these bidentate P,N-donors.

9.
J Org Chem ; 81(3): 1198-205, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26765520

RESUMEN

We herein describe the synthesis and property evaluation of several brominated and chlorinated tetraazapentacenes. The targets were obtained by thermal condensation of 2,5-dihydroxyquinone with 4,5-dichloro-, 2,6-dichloro-, and 4,5-dibromo-1,2-phenylenediamine, followed by oxidation with hot acidic dichromate. Double alkynylation, reductive deoxygenation, and subsequent oxidation using MnO2 furnishes the target compounds. Absorption spectra, electrochemistry, and single crystal structures of the targets are reported. The 1,4,8,11-tetrachlorotetraazapentacene (1,4,8,11-tetrachloroquinoxalino[2,3-b]phenazine) carrying its chlorine atoms in the peri-positions packs in a herringbone type arrangement, while the isomer (2,3,9,10-tetrachloroquinoxalino[2,3-b]phenazine, with the chlorine atoms in the east and west positions) packs in one-dimensional stacks. In all cases, the reduction potentials and the calculated LUMO-positions are decreased by the introduction of the halogen atoms.

10.
Dalton Trans ; 44(32): 14242-7, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26189646

RESUMEN

The reactions of the chloro-phosph(iii)azane dimers [ClP(µ-NR)]2 with LiSH give the dimers [S[double bond, length as m-dash](H)P(µ-NR)]2 (), which are potential new building blocks for inorganic macrocycles of the type [{P(µ-NR)}2(µ-S)]n. NMR spectroscopic studies and DFT calculations show that the preference for the cis or trans isomers of is largely influenced by the steric demands of the R-group, with cis isomers being preferred for bulky substituents. This is an important factor in regard to applications in macrocycle synthesis since the cis arrangement is pre-organized for cyclisation.

11.
Inorg Chem ; 54(15): 7636-44, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26181231

RESUMEN

A series of formamidine-bridged P2N2 cages have been prepared. Upon deprotonation, these compounds serve as valuable precursors to hybrid N-heterocyclic carbene ligands, whereas direct metalation gives rearranged dimetallic complexes as a result of cleavage of the formamidine bridge. The latter metal complexes contain an intact cyclophosphazane moiety that coordinates two distinct metal centers in a monodentate and a chelating fashion. A computational study has been carried out to elucidate the bonding within the P2N2 framework as well as the reactivity patterns. Natural bond orbital analysis indicates that the cage motif is poorly described by localized Lewis structures and that negative hyperconjugation effects govern the stability of the bicyclic framework. The donor capacity of the cyclophosphazane unit was assessed by inspection of the frontier molecular orbitals, highlighting the fact that π-back-donation from the metal fragments is crucial for effective metal-ligand binding.

12.
Chem Sci ; 6(4): 2506-2510, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29308160

RESUMEN

A simple, "click" synthetic approach to a new type of hybrid phosph(III)azane/NHC system is described. The presence of the phosphazane P2N2 ring unit, with P atoms flanking the NCN fragment and with this ring perpendicular to the binding site of the NHC, provides unique opportunities for modifying the electronic and steric character of these carbenes.

13.
J Org Chem ; 78(7): 3142-50, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23394549

RESUMEN

We report the successful synthesis of a series of ethynylated dioxadiazaacenes and investigate their properties. We developed a modular Cu-based catalytic procedure to build up [1,4]dioxino[2,3-b]pyrazine motifs starting from only a few building blocks. TIPS-acetylene-substituted benzene-1,2-diol and naphthalene-2,3-diol were reacted with 2,3-dichloropyrazine, 2,3-dichloroquinoxaline, and 2,3-dichlorobenzoquinoxaline to give a set of six novel and well-soluble dioxadiazaacenes. Different reaction conditions for the coupling were tested. Copper catalysis is most effective and gave the best yield of dioxadiazaacenes. The resulting azaoxaacenes were characterized in terms of optical and electronic properties and crystal packing.


Asunto(s)
Compuestos Aza/química , Compuestos Aza/síntesis química , Pirazinas/química , Alquilación , Catálisis , Cobre/química , Estructura Molecular , Teoría Cuántica
14.
ACS Nano ; 6(1): 557-65, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22133271

RESUMEN

A study of the adsorption equilibrium of solution-phase CdS quantum dots (QDs) and acid-derivatized viologen ligands (N-[1-heptyl],N'-[3-carboxypropyl]-4,4'-bipyridinium dihexafluorophosphate, V(2+)) reveals that the structure of the surfaces of the QDs depends on their concentration. This adsorption equilibrium is monitored through quenching of the photoluminescence of the QDs by V(2+) upon photoinduced electron transfer. When modeled with a simple Langmuir isotherm, the equilibrium constant for QD-V(2+) adsorption, K(a), increases from 6.7 × 10(5) to 8.6 × 10(6) M(-1) upon decreasing the absolute concentration of the QDs from 1.4 × 10(-6) to 5.1 × 10(-8) M. The apparent increase in K(a) upon dilution results from an increase in the mean number of available adsorption sites per QD from 1.1 (for [QD] = 1.4 × 10(-6) M) to 37 (for [QD] = 5.1 × 10(-8) M) through desorption of native ligands from the surfaces of the QDs and through disaggregation of soluble QD clusters. A new model based on the Langmuir isotherm that treats both the number of adsorbed ligands per QD and the number of available binding sites per QD as binomially distributed quantities is described. This model yields a concentration-independent value for K(a) of 8.7 × 10(5) M(-1) for the QD-V(2+) system and provides a convenient means for quantitative analysis of QD-ligand adsorption in the presence of competing surface processes.


Asunto(s)
Compuestos de Cadmio/química , Coloides/química , Modelos Químicos , Puntos Cuánticos , Compuestos de Selenio/química , Absorción , Simulación por Computador , Ligandos , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA