Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Spinal Cord Med ; 41(5): 503-517, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-28784042

RESUMEN

OBJECTIVE: Our goal was to determine if pairing transcranial direct current stimulation (tDCS) with rehabilitation for two weeks could augment adaptive plasticity offered by these residual pathways to elicit longer-lasting improvements in motor function in incomplete spinal cord injury (iSCI). DESIGN: Longitudinal, randomized, controlled, double-blinded cohort study. SETTING: Cleveland Clinic Foundation, Cleveland, Ohio, USA. PARTICIPANTS: Eight male subjects with chronic incomplete motor tetraplegia. INTERVENTIONS: Massed practice (MP) training with or without tDCS for 2 hrs, 5 times a week. OUTCOME MEASURES: We assessed neurophysiologic and functional outcomes before, after and three months following intervention. Neurophysiologic measures were collected with transcranial magnetic stimulation (TMS). TMS measures included excitability, representational volume, area and distribution of a weaker and stronger muscle motor map. Functional assessments included a manual muscle test (MMT), upper extremity motor score (UEMS), action research arm test (ARAT) and nine hole peg test (NHPT). RESULTS: We observed that subjects receiving training paired with tDCS had more increased strength of weak proximal (15% vs 10%), wrist (22% vs 10%) and hand (39% vs. 16%) muscles immediately and three months after intervention compared to the sham group. Our observed changes in muscle strength were related to decreases in strong muscle map volume (r=0.851), reduced weak muscle excitability (r=0.808), a more focused weak muscle motor map (r=0.675) and movement of weak muscle motor map (r=0.935). CONCLUSION: Overall, our results encourage the establishment of larger clinical trials to confirm the potential benefit of pairing tDCS with training to improve the effectiveness of rehabilitation interventions for individuals with SCI. TRIAL REGISTRATION: NCT01539109.


Asunto(s)
Terapia por Ejercicio/métodos , Cuadriplejía/terapia , Traumatismos de la Médula Espinal/terapia , Estimulación Transcraneal de Corriente Directa/métodos , Humanos , Masculino , Persona de Mediana Edad , Actividad Motora , Contracción Muscular , Rehabilitación Neurológica/métodos , Proyectos Piloto , Cuadriplejía/rehabilitación , Recuperación de la Función , Traumatismos de la Médula Espinal/rehabilitación
2.
Clin Neurophysiol ; 128(6): 892-902, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28402865

RESUMEN

OBJECTIVE: The standard approach to brain stimulation in stroke is based on the premise that ipsilesional M1 (iM1) is important for motor function of the paretic upper limb, while contralesional cortices compete with iM1. Therefore, the approach typically advocates facilitating iM1 and/or inhibiting contralesional M1 (cM1). But, this approach fails to elicit much improvement in severely affected patients, who on account of extensive damage to ipsilesional pathways, cannot rely on iM1. These patients are believed to instead rely on the undamaged cortices, especially the contralesional dorsal premotor cortex (cPMd), for support of function of the paretic limb. Here, we tested for the first time whether facilitation of cPMd could improve paretic limb function in severely affected patients, and if a cut-off could be identified to separate responders to cPMd from responders to the standard approach to stimulation. METHODS: In a randomized, sham-controlled crossover study, fifteen patients received the standard approach of stimulation involving inhibition of cM1 and a new approach involving facilitation of cPMd using repetitive transcranial magnetic stimulation (rTMS). Patients also received rTMS to control areas. At baseline, impairment [Upper Extremity Fugl-Meyer (UEFMPROXIMAL, max=36)] and damage to pathways [fractional anisotropy (FA)] was measured. We measured changes in time to perform proximal paretic limb reaching, and neurophysiology using TMS. RESULTS: Facilitation of cPMd generated more improvement in severely affected patients, who had experienced greater damage and impairment than a cut-off value of FA (0.5) and UEFMPROXIMAL (26-28). The standard approach instead generated more improvement in mildly affected patients. Responders to cPMd showed alleviation of interhemispheric competition imposed on iM1, while responders to the standard approach showed gains in ipsilesional excitability in association with improvement. CONCLUSIONS: A preliminary cut-off level of severity separated responders for standard approach vs. facilitation of cPMd. SIGNIFICANCE: Cut-offs identified here could help select candidates for tailored stimulation in future studies so patients in all ranges of severity could potentially achieve maximum benefit in function of the paretic upper limb.


Asunto(s)
Isquemia Encefálica/terapia , Corteza Motora/fisiopatología , Accidente Cerebrovascular/terapia , Estimulación Magnética Transcraneal , Anciano , Isquemia Encefálica/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Inhibición Neural , Accidente Cerebrovascular/fisiopatología , Extremidad Superior/inervación , Extremidad Superior/fisiología
3.
Brain Connect ; 7(3): 182-196, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28142257

RESUMEN

The pain matrix is comprised of an extensive network of brain structures involved in sensory and/or affective information processing. The thalamus is a key structure constituting the pain matrix. The thalamus serves as a relay center receiving information from multiple ascending pathways and relating information to and from multiple cortical areas. However, it is unknown how thalamocortical networks specific to sensory-affective information processing are functionally integrated. Here, in a proof-of-concept study in healthy humans, we aimed to understand this connectivity using transcranial direct current stimulation (tDCS) targeting primary motor (M1) or dorsolateral prefrontal cortices (DLPFC). We compared changes in functional connectivity (FC) with DLPFC tDCS to changes in FC with M1 tDCS. FC changes were also compared to further investigate its relation with individual's baseline experience of pain. We hypothesized that resting-state FC would change based on tDCS location and would represent known thalamocortical networks. Ten right-handed individuals received a single application of anodal tDCS (1 mA, 20 min) to right M1 and DLPFC in a single-blind, sham-controlled crossover study. FC changes were studied between ventroposterolateral (VPL), the sensory nucleus of thalamus, and cortical areas involved in sensory information processing and between medial dorsal (MD), the affective nucleus, and cortical areas involved in affective information processing. Individual's perception of pain at baseline was assessed using cutaneous heat pain stimuli. We found that anodal M1 tDCS and anodal DLPFC tDCS both increased FC between VPL and sensorimotor cortices, although FC effects were greater with M1 tDCS. Similarly, anodal M1 tDCS and anodal DLPFC tDCS both increased FC between MD and motor cortices, but only DLPFC tDCS modulated FC between MD and affective cortices, like DLPFC. Our findings suggest that M1 stimulation primarily modulates FC of sensory networks, whereas DLPFC stimulation modulates FC of both sensory and affective networks. Our findings when replicated in a larger group of individuals could provide useful evidence that may inform future studies on pain to differentiate between effects of M1 and DLPFC stimulation. Notably, our finding that individuals with high baseline pain thresholds experience greater FC changes with DLPFC tDCS implies the role of DLPFC in pain modulation, particularly pain tolerance.


Asunto(s)
Corteza Motora/fisiología , Vías Nerviosas/fisiología , Percepción del Dolor/fisiología , Corteza Prefrontal/fisiología , Estimulación Transcraneal de Corriente Directa , Adulto , Estudios Cruzados , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Método Simple Ciego
4.
J Stroke Cerebrovasc Dis ; 26(5): 1121-1127, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28117211

RESUMEN

OBJECTIVE: A high proportion of patients with stroke do not qualify for repetitive transcranial magnetic stimulation (rTMS) clinical studies due to the presence of metallic stents. The ultimate concern is that any metal could become heated due to eddy currents. However, to date, no clinical safety data are available regarding the risk of metallic stents heating with rTMS. METHODS: We tested the safety of common rTMS protocols (1 Hz and 10 Hz) with stents used commonly in stroke, nitinol and elgiloy. In our method, stents were tested in gelled saline at 2 different locations: at the center and at the lobe of the coil. In addition, at each location, stent heating was evaluated in 3 different orientations: parallel to the long axis of coil, parallel to the short axis of the coil, and perpendicular to the plane of the coil. RESULTS: We found that stents did not heat to more than 1°C with either 1 Hz rTMS or 10 Hz rTMS in any configuration or orientation. Heating in general was greater at the lobe when the stent was oriented perpendicularly. CONCLUSIONS: Our study represents a new method for ex vivo quantification of stent heating. We have found that heating of stents was well below the Food and Drug Administration standards of 2°C. Thus, our study paves the way for in vivo testing of rTMS (≤10 Hz) in the presence of implanted magnetic resonance imaging-compatible stents in animal studies. When planning human safety studies though, geometry, orientation, and location relative to the coil would be important to consider as well.


Asunto(s)
Aleaciones , Aleaciones de Cromo , Cobalto , Procedimientos Endovasculares/instrumentación , Stents , Accidente Cerebrovascular/terapia , Estimulación Transcraneal de Corriente Directa , Procedimientos Endovasculares/efectos adversos , Análisis de Falla de Equipo , Calefacción , Humanos , Ensayo de Materiales , Diseño de Prótesis , Falla de Prótesis , Medición de Riesgo , Estimulación Transcraneal de Corriente Directa/efectos adversos
5.
Neuroscience ; 326: 95-104, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27058145

RESUMEN

It is well known that corticomotor excitability is altered during the post-exercise depression following fatigue within the primary motor cortex (M1). However, it is currently unknown whether corticomotor reorganization following muscle fatigue differs between magnitudes of force and whether corticomotor reorganization occurs measured with transcranial magnetic stimulation (TMS). Fifteen young healthy adults (age 23.8±1.4, 8 females) participated in a within-subjects, repeated measures design study, where they underwent three testing sessions separated by one-week each. Subjects performed separate sessions of each: low-force isometric contraction (30% maximal voluntary contraction [MVC]), high-force isometric contraction (95% MVC) of the first dorsal interosseous (FDI) muscle until self-perceived exhaustion, as well as one session of a 30-min rest as a control. We examined changes in corticomotor map area, excitability and location of the FDI representation in and around M1 using TMS. The main finding was that following low-force, but not high-force fatigue (HFF) corticomotor map area and excitability reduced [by 3cm(2) (t(14)=-2.94, p=0.01) and 56% respectively t(14)=-4.01, p<0.001)]. Additionally, the region of corticomotor excitability shifted posteriorly (6.4±2.5mm) (t(14)=-6.33, p=.019). Corticomotor output became less excitable particularly in regions adjoining M1. Overall, post-exercise depression is present in low-force, but not for HFF. Further, low-force fatigue (LFF) results in a posterior shift in corticomotor output. These changes may be indicative of increased sensory feedback from the somatosensory cortex during the recovery phase of fatigue.


Asunto(s)
Ejercicio Físico , Contracción Isométrica , Corteza Motora/fisiología , Fatiga Muscular , Adulto , Electromiografía , Potenciales Evocados Motores , Femenino , Humanos , Masculino , Músculo Esquelético/fisiología , Estimulación Magnética Transcraneal , Adulto Joven
6.
Front Neurosci ; 10: 79, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27013942

RESUMEN

BACKGROUND: Recruitment curves (RCs) acquired using transcranial magnetic stimulation are commonly used in stroke to study physiologic functioning of corticospinal tracts (CST) from M1. However, it is unclear whether CSTs from higher motor cortices contribute as well. OBJECTIVE: To explore whether integrity of CST from higher motor areas, besides M1, relates to CST functioning captured using RCs. METHODS: RCs were acquired for a paretic hand muscle in patients with chronic stroke. Metrics describing gain and overall output of CST were collected. CST integrity was defined by diffusion tensor imaging. For CST emerging from M1 and higher motor areas, integrity (fractional anisotropy) was evaluated in the region of the posterior limb of the internal capsule, the length of CST and in the region of the stroke lesion. RESULTS: We found that output and gain of RC was related to integrity along the length of CST emerging from higher motor cortices but not the M1. CONCLUSIONS: Our results suggest that RC parameters in chronic stroke infer function primarily of CST descending from the higher motor areas but not M1. RCs may thus serve as a simple, in-expensive means to assess re-mapping of alternate areas that is generally studied with resource-intensive neuroimaging in stroke.

7.
J Stroke Cerebrovasc Dis ; 25(4): 927-37, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26851211

RESUMEN

OBJECTIVE: Noninvasive brain stimulation (NIBS) can augment functional recovery following stroke; however, the technique lacks regulatory approval. Low enrollment in NIBS clinical trials is a key roadblock. Here, we pursued evidence to support the prevailing opinion that enrollment in trials of NIBS is even lower than enrollment in trials of invasive, deep brain stimulation (DBS). METHODS: We compared 2 clinical trials in stroke conducted within a single urban hospital system, one employing NIBS and the other using DBS, (1) to identify specific criteria that generate low enrollment rates for NIBS and (2) to devise strategies to increase recruitment with guidance from DBS. RESULTS: Notably, we found that enrollment in the NIBS case study was 5 times lower (2.8%) than the DBS trial (14.5%) (χ(2) = 20.815, P < .0001). Although the number of candidates who met the inclusion criteria was not different (χ(2) = .04, P < .841), exclusion rates differed significantly between the 2 studies (χ(2) = 21.354, P < .0001). Beyond lack of interest, higher exclusion rates in the NIBS study were largely due to exclusion criteria that were not present in the DBS study, including restrictions for recurrent strokes, seizures, and medications. CONCLUSIONS: Based on our findings, we conclude and suggest that by (1) establishing criteria specific to each NIBS modality, (2) adjusting exclusion criteria based on guidance from DBS, and (3) including patients with common contraindications based on a probability of risk, we may increase enrollment and hence significantly impact the feasibility and generalizability of NIBS paradigms, particularly in stroke.


Asunto(s)
Encéfalo/fisiología , Estimulación Encefálica Profunda/métodos , Recuperación de la Función/fisiología , Accidente Cerebrovascular/terapia , Estimulación Magnética Transcraneal/métodos , Resultado del Tratamiento , Adulto , Anciano , Ensayos Clínicos como Asunto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dolor/etiología , Manejo del Dolor , Accidente Cerebrovascular/complicaciones , Adulto Joven
8.
Restor Neurol Neurosci ; 33(6): 911-26, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26484700

RESUMEN

PURPOSE: To demonstrate, in a proof-of-concept study, whether potentiating ipsilesional higher motor areas (premotor cortex and supplementary motor area) augments and accelerates recovery associated with constraint induced movement. METHODS: In a randomized, double-blinded pilot clinical study, 12 patients with chronic stroke were assigned to receive anodal transcranial direct current stimulation (tDCS) (n = 6) or sham (n = 6) to the ipsilesional higher motor areas during constraint-induced movement therapy. We assessed functional and neurophysiologic outcomes before and after 5 weeks of therapy. RESULTS: Only patients receiving tDCS demonstrated gains in function and dexterity. Gains were accompanied by an increase in excitability of the contralesional rather than the ipsilesional hemisphere. CONCLUSIONS: Our proof-of-concept study provides early evidence that stimulating higher motor areas can help recruit the contralesional hemisphere in an adaptive role in cases of greater ipsilesional injury. Whether this early evidence of promise translates to remarkable gains in functional recovery compared to existing approaches of stimulation remains to be confirmed in large-scale clinical studies that can reasonably dissociate stimulation of higher motor areas from that of the traditional primary motor cortices.


Asunto(s)
Corteza Motora/fisiopatología , Manipulaciones Musculoesqueléticas/métodos , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular/fisiopatología , Estimulación Transcraneal de Corriente Directa/métodos , Anciano , Método Doble Ciego , Femenino , Lateralidad Funcional/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/patología , Destreza Motora/fisiología , Proyectos Piloto , Pronóstico , Recuperación de la Función/fisiología , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/patología , Estimulación Magnética Transcraneal , Resultado del Tratamiento
10.
J Electromyogr Kinesiol ; 25(5): 754-64, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26111434

RESUMEN

OBJECTIVE: Reproducibility of transcranial magnetic stimulation (TMS) metrics is essential in accurately tracking recovery and disease. However, majority of evidence pertains to reproducibility of metrics for distal upper limb muscles. We investigate for the first time, reliability of corticospinal physiology for a large proximal muscle - the biceps brachii and relate how varying statistical analyses can influence interpretations. METHODS: 14 young right-handed healthy participants completed two sessions assessing resting motor threshold (RMT), motor evoked potentials (MEPs), motor map and intra-cortical inhibition (ICI) from the left biceps brachii. Analyses included paired t-tests, Pearson's, intra-class (ICC) and concordance correlation coefficients (CCC) and Bland-Altman plots. RESULTS: Unlike paired t-tests, ICC, CCC and Pearson's were >0.6 indicating good reliability for RMTs, MEP intensities and locations of map; however values were <0.3 for MEP responses and ICI. CONCLUSIONS: Corticospinal physiology, defining excitability and output in terms of intensity of the TMS device, and spatial loci are the most reliable metrics for the biceps. MEPs and variables based on MEPs are less reliable since biceps receives fewer cortico-motor-neuronal projections. Statistical tests of agreement and associations are more powerful reliability indices than inferential tests. SIGNIFICANCE: Reliable metrics of proximal muscles when translated to a larger number of participants would serve to sensitively track and prognosticate function in neurological disorders such as stroke where proximal recovery precedes distal.


Asunto(s)
Brazo/fisiología , Electromiografía/métodos , Músculo Esquelético/fisiología , Estimulación Magnética Transcraneal/métodos , Adulto , Electromiografía/normas , Potenciales Evocados Motores , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Estimulación Magnética Transcraneal/normas
11.
Arch Phys Med Rehabil ; 96(4 Suppl): S94-103, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25194451

RESUMEN

OBJECTIVE: To determine how interhemispheric balance in stroke, measured using transcranial magnetic stimulation (TMS), relates to balance defined using neuroimaging (functional magnetic resonance [fMRI], diffusion-tensor imaging [DTI]) and how these metrics of balance are associated with clinical measures of upper-limb function and disability. DESIGN: Cross sectional. SETTING: Laboratory. PARTICIPANTS: Patients with chronic stroke (N = 10; age, 63 ± 9 y) in a population-based sample with unilateral upper-limb paresis. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Interhemispheric balance was measured with TMS, fMRI, and DTI. TMS defined interhemispheric differences in the recruitment of corticospinal output, size of the corticomotor output maps, and degree of mutual transcallosal inhibition that they exerted on one another. fMRI studied whether cortical activation during the movement of the paretic hand was lateralized to the ipsilesional or to the contralesional primary motor cortex (M1), premotor cortex (PMC), and supplementary motor cortex (SMA). DTI was used to define interhemispheric differences in the integrity of the corticospinal tracts projecting from the M1. Clinical outcomes tested function (upper extremity Fugl-Meyer [UEFM]) and perceived disability in the use of the paretic hand (Motor Activity Log [MAL] amount score). RESULTS: Interhemispheric balance assessed with TMS relates differently to fMRI and DTI. Patients with high fMRI lateralization to the ipsilesional hemisphere possessed stronger ipsilesional corticomotor output maps (M1: r = .831, P = .006; PMC: r = .797, P = .01) and better balance of mutual transcallosal inhibition (r = .810, P = .015). Conversely, we found that patients with less integrity of the corticospinal tracts in the ipsilesional hemisphere show greater corticospinal output of homologous tracts in the contralesional hemisphere (r = .850, P = .004). However, an imbalance in integrity and output do not relate to transcallosal inhibition. Clinically, although patients with less integrity of corticospinal tracts from the ipsilesional hemisphere showed worse impairments (UEFM) (r = -.768, P = .016), those with low fMRI lateralization to the ipsilesional hemisphere had greater perception of disability (MAL amount score) (M1: r = .883, P = .006; PMC: r = .817, P = .007; SMA: r = .633, P = .062). CONCLUSIONS: In patients with chronic motor deficits of the upper limb, fMRI may serve to mark perceived disability and transcallosal influence between hemispheres. DTI-based integrity of the corticospinal tracts, however, may be useful in categorizing the range of functional impairments of the upper limb. Further, in patients with extensive corticospinal damage, DTI may help infer the role of the contralesional hemisphere in recovery.


Asunto(s)
Evaluación de la Discapacidad , Paresia/fisiopatología , Accidente Cerebrovascular/fisiopatología , Estimulación Magnética Transcraneal/métodos , Extremidad Superior , Anciano , Enfermedad Crónica , Estudios Transversales , Imagen de Difusión Tensora , Femenino , Lateralidad Funcional/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/fisiopatología , Paresia/diagnóstico , Tractos Piramidales/fisiopatología
12.
Neuroscientist ; 21(3): 225-40, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24951091

RESUMEN

Stimulating the brain to drive its adaptive plastic potential is promising to accelerate rehabilitative outcomes in stroke. The ipsilesional primary motor cortex (M1) is invariably facilitated. However, evidence supporting its efficacy is divided, indicating that we may have overgeneralized its potential. Since the M1 and its corticospinal output are frequently damaged in patients with serious lesions and impairments, ipsilesional premotor areas (PMAs) could be useful alternates instead. We base our premise on their higher probability of survival, greater descending projections, and adaptive potential, which is causal for recovery across the seriously impaired. Using a conceptual model, we describe how chronically stimulating PMAs would strongly affect key mechanisms of stroke motor recovery, such as facilitating the plasticity of alternate descending output, restoring interhemispheric balance, and establishing widespread connectivity. Although at this time it is difficult to predict whether PMAs would be "better," it is important to at least investigate whether they are reasonable substitutes for the M1. Even if the stimulation of the M1 may benefit those with maximum recovery potential, while that of PMAs may only help the more disadvantaged, it may still be reasonable to achieve some recovery across the majority rather than stimulate a single locus fated to be inconsistently effective across all.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Corteza Motora/fisiopatología , Rehabilitación de Accidente Cerebrovascular , Animales , Ensayos Clínicos como Asunto , Humanos , Plasticidad Neuronal , Tractos Piramidales/fisiopatología , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Magnética Transcraneal/métodos
13.
PLoS One ; 9(2): e89371, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586726

RESUMEN

Aging-related weakness is due in part to degeneration within the central nervous system. However, it is unknown how changes to the representation of corticospinal output in the primary motor cortex (M1) relate to such weakness. Transcranial magnetic stimulation (TMS) is a noninvasive method of cortical stimulation that can map representation of corticospinal output devoted to a muscle. Using TMS, we examined age-related alterations in maps devoted to biceps brachii muscle to determine whether they predicted its age-induced weakness. Forty-seven right-handed subjects participated: 20 young (22.6 ± 0.90 years) and 27 old (74.96 ± 1.35 years). We measured strength as force of elbow flexion and electromyographic activation of biceps brachii during maximum voluntary contraction. Mapping variables included: 1) center of gravity or weighted mean location of corticospinal output, 2) size of map, 3) volume or excitation of corticospinal output, and 4) response density or corticospinal excitation per unit area. Center of gravity was more anterior in old than in young (p<0.001), though there was no significant difference in strength between the age groups. Map size, volume, and response density showed no significant difference between groups. Regardless of age, center of gravity significantly predicted strength (ß = -0.34, p = 0.005), while volume adjacent to the core of map predicted voluntary activation of biceps (ß = 0.32, p = 0.008). Overall, the anterior shift of the map in older adults may reflect an adaptive change that allowed for the maintenance of strength. Laterally located center of gravity and higher excitation in the region adjacent to the core in weaker individuals could reflect compensatory recruitment of synergistic muscles. Thus, our study substantiates the role of M1 in adapting to aging-related weakness and subtending strength and muscle activation across age groups. Mapping from M1 may offer foundation for an examination of mechanisms that preserve strength in elderly.


Asunto(s)
Envejecimiento/fisiología , Potenciales Evocados Motores/fisiología , Corteza Motora/fisiopatología , Debilidad Muscular/fisiopatología , Músculo Esquelético/fisiopatología , Anciano , Mapeo Encefálico , Femenino , Humanos , Masculino , Corteza Motora/fisiología , Contracción Muscular/fisiología , Estimulación Magnética Transcraneal , Adulto Joven
14.
J Neurophysiol ; 110(11): 2563-73, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24027104

RESUMEN

Muscle weakness associated with aging implicates central neural degeneration. However, role of the primary motor cortex (M1) is poorly understood, despite evidence that gains in strength in younger adults are associated with its adaptations. We investigated whether weakness of biceps brachii in aging analogously relates to processes in M1. We enrolled 20 young (22.6 ± 0.87 yr) and 28 old (74.79 ± 1.37 yr) right-handed participants. Using transcranial magnetic stimulation, representation of biceps in M1 was identified. We examined the effect of age and sex on strength of left elbow flexion, voluntary activation of biceps, corticospinal excitability and output, and short-interval intracortical and interhemispheric inhibition. Interhemispheric inhibition was significantly exaggerated in the old (P = 0.047), while strength tended to be lower (P = 0.075). Overall, women were weaker (P < 0.001). Processes of M1 related to strength or voluntary activation of biceps, but only in older adults. Corticospinal excitability was lower in weaker individuals (r = 0.38), and corticospinal output, intracortical inhibition and interhemispheric inhibition were reduced too in individuals who poorly activated biceps (r = 0.43, 0.54 and 0.38). Lower intracortical inhibition may reflect compensation for reduced corticospinal excitability, allowing weaker older adults to spread activity in M1 to recruit synergists and attempt to sustain motor output. Exaggerated interhemispheric inhibition, however, conflicts with previous evidence, potentially related to greater callosal damage in our older sample, our choice of proximal vs. distal muscle and differing influence of measurement of inhibition in rest vs. active states of muscle. Overall, age-specific relation of M1 to strength and muscle activation emphasizes that its adaptations only emerge when necessitated, as in a weakening neuromuscular system in aging.


Asunto(s)
Envejecimiento/fisiología , Corteza Motora/fisiología , Fuerza Muscular , Músculo Esquelético/fisiología , Adulto , Anciano , Femenino , Humanos , Masculino , Contracción Muscular , Músculo Esquelético/inervación , Inhibición Neural , Tractos Piramidales/fisiología , Factores Sexuales , Estimulación Magnética Transcraneal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA