Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 19(8): 951-961, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37248413

RESUMEN

Nutritional codependence (syntrophy) has underexplored potential to improve biotechnological processes by using cooperating cell types. So far, design of yeast syntrophic communities has required extensive genetic manipulation, as the co-inoculation of most eukaryotic microbial auxotrophs does not result in cooperative growth. Here we employ high-throughput phenotypic screening to systematically test pairwise combinations of auxotrophic Saccharomyces cerevisiae deletion mutants. Although most coculture pairs do not enter syntrophic growth, we identify 49 pairs that spontaneously form syntrophic, synergistic communities. We characterized the stability and growth dynamics of nine cocultures and demonstrated that a pair of tryptophan auxotrophs grow by exchanging a pathway intermediate rather than end products. We then introduced a malonic semialdehyde biosynthesis pathway split between different pairs of auxotrophs, which resulted in increased production. Our results report the spontaneous formation of stable syntrophy in S. cerevisiae auxotrophs and illustrate the biotechnological potential of dividing labor in a cooperating intraspecies community.


Asunto(s)
Biotecnología , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Curr Opin Genet Dev ; 77: 101987, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36183585

RESUMEN

Metal ions are potent catalysts and have been available for cellular biochemistry at all stages of evolution. Growing evidence suggests that metal catalysis was critical for the origin of the very first metabolic reactions. With approximately 80% of modern metabolic pathways being dependent on metal ions, metallocatalysis and homeostasis continue to be essential for intracellular metabolic networks and physiology. However, the genetic network that controls metal ion homeostasis and the impact of metal availability on metabolism is poorly understood. Here, we review recent work on gene and protein evolution relevant for better understanding metal ion biology and its role in metabolism. We highlight the importance of analysing the origin and evolution of enzyme catalysis in the context of catalytically relevant metal ions, summarise unanswered questions essential for developing a comprehensive understanding of metal ion homeostasis and advocate for the consideration of metal ion properties and availability in the design and directed evolution of novel enzymes and pathways.


Asunto(s)
Redes Reguladoras de Genes , Metales , Iones/química , Metales/química , Metales/metabolismo , Homeostasis/genética , Catálisis
3.
Elife ; 112022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35900202

RESUMEN

Interpreting the function and metabolism of enzymatic DNA modifications requires both position-specific and global quantities. Sequencing-based techniques that deliver the former have become broadly accessible, but analytical methods for the global quantification of DNA modifications have thus far been applied mostly to individual problems. We established a mass spectrometric method for the sensitive and accurate quantification of multiple enzymatic DNA modifications. Then, we isolated DNA from 124 archean, bacterial, fungal, plant, and mammalian species, and several tissues and created a resource of global DNA modification quantities. Our dataset provides insights into the general nature of enzymatic DNA modifications, reveals unique biological cases, and provides complementary quantitative information to normalize and assess the accuracy of sequencing-based detection of DNA modifications. We report that only three of the studied DNA modifications, methylcytosine (5mdC), methyladenine (N6mdA) and hydroxymethylcytosine (5hmdC), were detected above a picomolar detection limit across species, and dominated in higher eukaryotes (5mdC), in bacteria (N6mdA), or the vertebrate central nervous systems (5hmdC). All three modifications were detected simultaneously in only one of the tested species, Raphanus sativus. In contrast, these modifications were either absent or detected only at trace quantities, across all yeasts and insect genomes studied. Further, we reveal interesting biological cases. For instance, in Allium cepa, Helianthus annuus, or Andropogon gerardi, more than 35% of cytosines were methylated. Additionally, next to the mammlian CNS, 5hmdC was also detected in plants like Lepidium sativum and was found on 8% of cytosines in the Garra barreimiae brain samples. Thus, identifying unexpected levels of DNA modifications in several wild species, our resource underscores the need to address biological diversity for studying DNA modifications.


Asunto(s)
Adenina , Citosina , 5-Metilcitosina/metabolismo , Adenina/metabolismo , Animales , Citosina/química , ADN/metabolismo , Metilación de ADN , Eucariontes/genética , Mamíferos/genética
4.
Chem Commun (Camb) ; 50(3): 323-5, 2014 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-24233059

RESUMEN

A novel 1,3-amino group migration strategy for the synthesis of acrylamidines is presented. Cu(i) catalyzed reaction of N,N-disubstituted propargylamine with tosylazide generates a highly reactive ketenimine intermediate which is trapped by a tethered amino group leading to the rearrangement reaction.


Asunto(s)
Amidinas/química , Pargilina/análogos & derivados , Propilaminas/química , Amidinas/síntesis química , Catálisis , Química Clic , Cobre/química , Pargilina/química
5.
Chem Commun (Camb) ; 48(21): 2722-4, 2012 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-22301487

RESUMEN

A new chromenoquinoline-based fluorescent off-on thiol probe 2 is reported. In aqueous buffer solutions at physiological pH, the probe exhibited 223-fold enhancement in fluorescence intensity by a Michael addition of cysteine to the maleimide appended to a chromenoquinoline. Cell permeability and live cell imaging of thiols are also demonstrated.


Asunto(s)
Benzopiranos/química , Colorantes Fluorescentes/química , Quinolinas/química , Compuestos de Sulfhidrilo/química , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Cisteína/química , Humanos , Maleimidas/química , Microscopía Fluorescente , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA