Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 5(12): e14029, 2010 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-21179196

RESUMEN

Phosphorylation-triggered degradation is a common strategy for elimination of regulatory proteins in many important cell signaling processes. Interesting examples include cyclin-dependent kinase inhibitors such as p27 in human and Sic1 in yeast, which play crucial roles during the G1/S transition in the cell cycle. In this work, we have modeled and analyzed the dynamics of multisite-phosphorylation-triggered protein degradation systematically. Inspired by experimental observations on the Sic1 protein and a previous intriguing theoretical conjecture, we develop a model to examine in detail the degradation dynamics of a protein featuring multiple phosphorylation sites and a threshold site number for elimination in response to a kinase signal. Our model explains the role of multiple phosphorylation sites, compared to a single site, in the regulation of protein degradation. A single-site protein cannot convert a graded input of kinase increase to much sharper output, whereas multisite phosphorylation is capable of generating a highly switch-like temporal profile of the substrate protein with two characteristics: a temporal threshold and rapid decrease beyond the threshold. We introduce a measure termed temporal response coefficient to quantify the extent to which a response in the time domain is switch-like and further investigate how this property is determined by various factors including the kinase input, the total number of sites, the threshold site number for elimination, the order of phosphorylation, the kinetic parameters, and site preference. Some interesting and experimentally verifiable predictions include that the non-degradable fraction of the substrate protein exhibits a more switch-like temporal profile; a sequential system is more switch-like, while a random system has the advantage of increased robustness; all the parameters, including the total number of sites, the threshold site number for elimination and the kinetic parameters synergistically determine the exact extent to which the degradation profile is switch-like. Our results suggest design principles for protein degradation switches which might be a widespread mechanism for precise regulation of cellular processes such as cell cycle progression.


Asunto(s)
Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/química , Proteínas de Saccharomyces cerevisiae/química , Animales , Sitios de Unión , Ciclo Celular , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación de la Expresión Génica , Humanos , Cinética , Sistema de Señalización de MAP Quinasas , Modelos Biológicos , Fosforilación , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
2.
Chem Biol ; 16(3): 239-41, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19318204

RESUMEN

In their new Cell paper, Cantone et al. (2009) present exciting results on constructing and utilizing a small synthetic gene regulatory network in yeast that draws from two rapidly developing fields of systems and synthetic biology.


Asunto(s)
Redes Reguladoras de Genes , Ingeniería Genética/métodos , Biología de Sistemas/métodos , Algoritmos , Simulación por Computador , Regulación Fúngica de la Expresión Génica , Modelos Biológicos , Levaduras/genética , Levaduras/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA