Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Pharm Bull ; 14(1): 67-85, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38585458

RESUMEN

The skin is the body's largest organ and serves as a site of administration for various medications. Transdermal drug delivery systems have several advantages over traditional delivery systems. It has both local and systemic therapeutic properties. Controlled plasma drug levels, reduced dosing frequency, and avoidance of hepatic first-pass metabolism are just a few of these systems' advantages. To achieve maximum efficacy, it is critical to understand the kinetics, physiochemical properties of the drug moiety, and drug transport route. This manuscript focused on the principles of various physical means to facilitate transdermal drug delivery. Some examples are iontophoresis, electrophoresis, photomechanical waves, ultrasound, needleless injections, and microneedles. Mechanical, chemical, magnetic, and electrical energy are all used in physical methods. A major advantage of physical methods is their capability to abbreviate pain, which can be used for effective disease management. Further investigation should be carried out at the clinical level to understand these methods for effective drug delivery.

2.
J Orthop ; 34: 201-206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36104993

RESUMEN

Background: Artificial Intelligence (AI) has improved the way of looking at technological challenges. Today, we can afford to see many of the problems as just an input-output system rather than solving from the first principles. The field of Orthopaedics is not spared from this rapidly expanding technology. The recent surge in the use of AI can be attributed mainly to advancements in deep learning methodologies and computing resources. This review was conducted to draw an outline on the role of AI in orthopaedics. Methods: We developed a search strategy and looked for articles on PubMed, Scopus, and EMBASE. A total of 40 articles were selected for this study, from tools for medical aid like imaging solutions, implant management, and robotic surgery to understanding scientific questions. Results: A total of 40 studies have been included in this review. The role of AI in the various subspecialties such as arthroplasty, trauma, orthopaedic oncology, foot and ankle etc. have been discussed in detail. Conclusion: AI has touched most of the aspects of Orthopaedics. The increase in technological literacy, data management plans, and hardware systems, amalgamated with the access to hand-held devices like mobiles, and electronic pads, augur well for the exciting times ahead in this field. We have discussed various technological breakthroughs in AI that have been able to perform in Orthopaedics, and also the limitations and the problem with the black-box approach of modern AI algorithms. We advocate for better interpretable algorithms which can help both the patients and surgeons alike.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA