Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 78(8): 086108, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17764368

RESUMEN

A single chord, single processing chain, hybrid (analog/digital) pulse height analysis diagnostic has been developed for the TCV tokamak, aiming to provide the evolution of the plasma electron temperature with a software selectable minimum temporal resolution of 100 ms. The high count rate (approximately 65 kHz) together with an energy resolution of 190 eV (at 5.9 keV) were achieved by encoding the data stream with an on-site developed interface amplifier and time generator. The diagnostic was also used to investigate the non-Maxwellian behavior of the electron energy distribution function with strong electron cyclotron resonance heating and to monitor the presence of intrinsic and injected impurities in the 700 eV-20 keV energy range. The conversion of this diagnostic into a real-time control tool is under development.


Asunto(s)
Algoritmos , Aceleradores de Partículas/instrumentación , Procesamiento de Señales Asistido por Computador , Difracción de Rayos X/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Factores de Tiempo
2.
Rev Sci Instrum ; 78(12): 123505, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18163730

RESUMEN

A simple, compact cantilever force probe (CFP) has been developed for plasma pressure measurements. It is based on the pull-in phenomenon well known in microelectromechanical-system electrostatic actuators. The probe consists of a thin (25 mum) titanium foil cantilever (38 mm of length and 14 mm of width) and a fixed electrode separated by a 0.75 mm gap. The probe is shielded by brass box and enclosed into boron nitride housing with a 9 mm diameter window for exposing part of cantilever surface to the plasma. When the voltage is applied between the cantilever and the electrode, an attractive electrostatic force is counterbalanced by cantilever restoring spring force. At some threshold (pull-in) voltage the system becomes unstable and the cantilever abruptly pulls toward the fixed electrode until breakdown occurs between them. The threshold voltage is sensitive to an additional externally applied force, while a simple detection of breakdown occurrence can be used to measure that threshold voltage value. The sensitivity to externally applied forces obtained during calibration is 0.28 V/microN (17.8 VPa for pressure). However, the resolution of the measurements is +/-0.014 mN (+/-0.22 Pa) due to the statistical scattering in measured pull-in voltages. The diagnostic temporal resolution is approximately 10 ms, being determined by the dynamics of pull-in process. The probe has been tested in the tokamak ISTTOK edge plasma, and a plasma force of approximately 0.07 mN (plasma pressure approximately 1.1 Pa) has been obtained near the leading edge of the limiter. This value is in a reasonable agreement with the estimations using local plasma parameters measured by electrical probes. The use of the described CFP is limited by a heat flux of Q approximately 10(6) W/m(2) due to uncontrollable rise of the cantilever temperature (DeltaT approximately 20 degrees C) during CFP response time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA