Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Pharmacol ; 92(4): 375-388, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28874607

RESUMEN

Nitric oxide (NO) activates the NO-sensitive soluble guanylate cyclase (NO-GC, sGC) and triggers intracellular signaling pathways involving cGMP. For survival of cochlear hair cells and preservation of hearing, NO-mediated cascades have both protective and detrimental potential. Here we examine the cochlear function of mice lacking one of the two NO-sensitive guanylate cyclase isoforms [NO-GC1 knockout (KO) or NO-GC2 KO]. The deletion of NO-GC1 or NO-GC2 did not influence electromechanical outer hair cell (OHC) properties, as measured by distortion product otoacoustic emissions, neither before nor after noise exposure, nor were click- or noise-burst-evoked auditory brainstem response thresholds different from controls. Yet inner hair cell (IHC) ribbons and auditory nerve responses showed significantly less deterioration in NO-GC1 KO and NO-GC2 KO mice after noise exposure. Consistent with a selective role of NO-GC in IHCs, NO-GC ß1 mRNA was found in isolated IHCs but not in OHCs. Using transgenic mice expressing the fluorescence resonance energy transfer-based cGMP biosensor cGi500, NO-induced elevation of cGMP was detected in real-time in IHCs but not in OHCs. Pharmacologic long-term treatment with a NO-GC stimulator altered auditory nerve responses but did not affect OHC function and hearing thresholds. Interestingly, NO-GC stimulation exacerbated the loss of auditory nerve response in aged animals but attenuated the loss in younger animals. We propose NO-GC2 and, to some degree, NO-GC1 as targets for early pharmacologic prevention of auditory fiber loss (synaptopathy). Both isoforms provide selective benefits for hearing function by maintaining the functional integrity of auditory nerve fibers in early life rather than at old age.


Asunto(s)
Guanilato Ciclasa/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patología , Óxido Nítrico/metabolismo , Ruido/efectos adversos , Receptores de Superficie Celular/metabolismo , Animales , Femenino , Células Ciliadas Auditivas Internas/efectos de los fármacos , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Morfolinas/farmacología , Pirimidinas/farmacología , Ratas , Ratas Wistar , Receptores de Superficie Celular/agonistas , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/patología
2.
Neurobiol Aging ; 44: 173-184, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27318145

RESUMEN

A dramatic shift in societal demographics will lead to rapid growth in the number of older people with hearing deficits. Poorer performance in suprathreshold speech understanding and temporal processing with age has been previously linked with progressing inner hair cell (IHC) synaptopathy that precedes age-dependent elevation of auditory thresholds. We compared central sound responsiveness after acoustic trauma in young, middle-aged, and older rats. We demonstrate that IHC synaptopathy progresses from middle age onward and hearing threshold becomes elevated from old age onward. Interestingly, middle-aged animals could centrally compensate for the loss of auditory fiber activity through an increase in late auditory brainstem responses (late auditory brainstem response wave) linked to shortening of central response latencies. In contrast, old animals failed to restore central responsiveness, which correlated with reduced temporal resolution in responding to amplitude changes. These findings may suggest that cochlear IHC synaptopathy with age does not necessarily induce temporal auditory coding deficits, as long as the capacity to generate neuronal gain maintains normal sound-induced central amplitudes.


Asunto(s)
Envejecimiento/fisiología , Células Ciliadas Auditivas Internas/fisiología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Audición/fisiología , Animales , Percepción Auditiva/fisiología , Umbral Auditivo , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Femenino , Humanos , Ratas Wistar , Tiempo de Reacción/fisiología
3.
Mol Neurobiol ; 47(1): 261-79, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23154938

RESUMEN

Increasing evidence shows that hearing loss is a risk factor for tinnitus and hyperacusis. Although both often coincide, a causal relationship between tinnitus and hyperacusis has not been shown. Currently, tinnitus and hyperacusis are assumed to be caused by elevated responsiveness in subcortical circuits. We examined both the impact of different degrees of cochlear damage and the influence of stress priming on tinnitus induction. We used (1) a behavioral animal model for tinnitus designed to minimize stress, (2) ribbon synapses in inner hair cells (IHCs) as a measure for deafferentation, (3) the integrity of auditory brainstem responses (ABR) to detect differences in stimulus-evoked neuronal activity, (4) the expression of the activity-regulated cytoskeletal protein, Arc, to identify long-lasting changes in network activity within the basolateral amygdala (BLA), hippocampal CA1, and auditory cortex (AC), and (5) stress priming to investigate the influence of corticosteroid on trauma-induced brain responses. We observed that IHC ribbon loss (deafferentation) leads to tinnitus when ABR functions remain reduced and Arc is not mobilized in the hippocampal CA1 and AC. If, however, ABR waves are functionally restored and Arc is mobilized, tinnitus does not occur. Both central response patterns were found to be independent of a profound threshold loss and could be shifted by the corticosterone level at the time of trauma. We, therefore, discuss the findings in the context of a history of stress that can trigger either an adaptive or nonadaptive brain response following injury.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Células Ciliadas Auditivas Internas/patología , Proteínas del Tejido Nervioso/metabolismo , Ruido/efectos adversos , Acúfeno/metabolismo , Acúfeno/patología , Estimulación Acústica , Animales , Corteza Auditiva/metabolismo , Corteza Auditiva/patología , Corteza Auditiva/fisiopatología , Umbral Auditivo , Proteínas del Citoesqueleto/genética , Potenciales Evocados Auditivos del Tronco Encefálico , Femenino , Células Ciliadas Auditivas Internas/metabolismo , Pérdida Auditiva/complicaciones , Pérdida Auditiva/metabolismo , Pérdida Auditiva/patología , Pérdida Auditiva/fisiopatología , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Estrés Psicológico/complicaciones , Estrés Psicológico/patología , Estrés Psicológico/fisiopatología , Acúfeno/complicaciones , Acúfeno/fisiopatología
4.
PLoS One ; 7(9): e45732, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23029208

RESUMEN

Inner hair cells (IHCs), the primary sensory receptors of the mammalian cochlea, fire spontaneous Ca(2+) action potentials before the onset of hearing. Although this firing activity is mainly sustained by a depolarizing L-type (Ca(V)1.3) Ca(2+) current (I(Ca)), IHCs also transiently express a large Na(+) current (I(Na)). We aimed to investigate the specific contribution of I(Na) to the action potentials, the nature of the channels carrying the current and whether the biophysical properties of I(Na) differ between low- and high-frequency IHCs. We show that I(Na) is highly temperature-dependent and activates at around -60 mV, close to the action potential threshold. Its size was larger in apical than in basal IHCs and between 5% and 20% should be available at around the resting membrane potential (-55 mV/-60 mV). However, in vivo the availability of I(Na) could potentially increase to >60% during inhibitory postsynaptic potential activity, which transiently hyperpolarize IHCs down to as far as -70 mV. When IHCs were held at -60 mV and I(Na) elicited using a simulated action potential as a voltage command, we found that I(Na) contributed to the subthreshold depolarization and upstroke of an action potential. We also found that I(Na) is likely to be carried by the TTX-sensitive channel subunits Na(V)1.1 and Na(V)1.6 in both apical and basal IHCs. The results provide insight into how the biophysical properties of I(Na) in mammalian cochlear IHCs could contribute to the spontaneous physiological activity during cochlear maturation in vivo.


Asunto(s)
Cóclea/fisiología , Células Ciliadas Auditivas Internas/fisiología , Activación del Canal Iónico , Canales de Sodio/fisiología , Potenciales de Acción , Animales , Inmunohistoquímica , Ratas
5.
Nat Med ; 18(2): 252-9, 2012 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-22270721

RESUMEN

Noise-induced hearing loss (NIHL) is a global health hazard with considerable pathophysiological and social consequences that has no effective treatment. In the heart, lung and other organs, cyclic guanosine monophosphate (cGMP) facilitates protective processes in response to traumatic events. We therefore analyzed NIHL in mice with a genetic deletion of the gene encoding cGMP-dependent protein kinase type I (Prkg1) and found a greater vulnerability to and markedly less recovery from NIHL in these mice as compared to mice without the deletion. Prkg1 was expressed in the sensory cells and neurons of the inner ear of wild-type mice, and its expression partly overlapped with the expression profile of cGMP-hydrolyzing phosphodiesterase 5 (Pde5). Treatment of rats and wild-type mice with the Pde5 inhibitor vardenafil almost completely prevented NIHL and caused a Prkg1-dependent upregulation of poly (ADP-ribose) in hair cells and the spiral ganglion, suggesting an endogenous protective cGMP-Prkg1 signaling pathway that culminates in the activation of poly (ADP-ribose) polymerase. These data suggest vardenafil or related drugs as possible candidates for the treatment of NIHL.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/fisiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/fisiología , Células Ciliadas Auditivas/fisiología , Pérdida Auditiva Provocada por Ruido/genética , Transducción de Señal/fisiología , Animales , Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/efectos de los fármacos , Activación Enzimática , Femenino , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/fisiología , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/fisiología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Pérdida Auditiva Provocada por Ruido/prevención & control , Imidazoles/farmacología , Ratones , Ratones Mutantes , Ruido/efectos adversos , Inhibidores de Fosfodiesterasa 5/farmacología , Piperazinas/farmacología , Poli Adenosina Difosfato Ribosa/biosíntesis , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/genética , Sulfonas/farmacología , Triazinas/farmacología , Regulación hacia Arriba/efectos de los fármacos , Diclorhidrato de Vardenafil
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA