Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 844: 157045, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35779724

RESUMEN

Water bodies in densely populated lowland areas are often impacted by multiple stressors. At these multi-stressed sites, it remains challenging to quantify the contribution of contaminated sediments. This study, therefore, aimed to elucidate the contribution of sediment contamination in 16 multi-stressed drainage ditches throughout the Netherlands. To this end an adjusted TRIAD framework was applied, where 1) contaminants and other variables in the sediment and the overlying water were measured, 2) whole-sediment laboratory bioassays were performed using larvae of the non-biting midge Chironomus riparius, and 3) the in situ benthic macroinvertebrate community composition was determined. It was hypothesized that the benthic macroinvertebrate community composition would respond to all jointly present stressors in both water and sediment, whereas the whole-sediment bioassays would only respond to the stressors present in the sediment. The benthic macroinvertebrate community composition was indeed related to multiple stressors in both water and sediment. Taxa richness was positively correlated with the presence of PO4-P in the water, macrophyte cover and some pesticides. Evenness, the number of Trichoptera families and the SPEARpesticides were positively correlated to the C:P ratios in the sediment, whilst negative correlations were observed with various contaminants in both the water and sediment. The whole-sediment bioassays with C. riparius positively related to the nutrient content of the sediment, whereas no negative relations to the sediment-associated contaminants were observed, even though the lowered SPEARpesticides index indicated contaminant effects in the field. Therefore, it was concluded that sediment contamination was identified as one of the various stressors that potentially drove the benthic macroinvertebrate community composition in the multi-stressed drainage ditches, but that nutrients may have masked the adverse effects caused by low and diverse sediment contaminants on C. riparius in the bioassays.


Asunto(s)
Chironomidae , Plaguicidas , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Sedimentos Geológicos , Humanos , Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
2.
Water Res ; 183: 116017, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32673894

RESUMEN

Legally-prescribed chemical monitoring is unfit for determining the pollution status of surface waters, and there is a need for improved assessment methods that consider the aggregated risk of all bioavailable micropollutants present in the aquatic environment. Therefore, the present study aimed to advance effect-based water quality assessment by implementing methodological improvements and to gain insight into contamination source-specific bioanalytical responses. Passive sampling of non-polar and polar organic compounds and metals was applied at 14 surface water locations that were characterized by two major anthropogenic contamination sources, agriculture and wastewater treatment plant (WWTP) effluent, as well as reference locations with a low expected impact from micropollutants. Departing from the experience gained in previous studies, a battery of 20 in vivo and in vitro bioassays was composed and subsequently exposed to the passive sampler extracts. Next, the bioanalytical responses were divided by their respective effect-based trigger values to obtain effect-based risk quotients, which were summed per location. These cumulative ecotoxicological risks were lowest for reference locations (4.3-10.9), followed by agriculture locations (11.3-27.2) and the highest for WWTP locations (12.8-47.7), and were mainly driven by polar organic contaminants. The bioanalytical assessment of the joint risks of metals and (non-)polar organic compounds resulted in the successful identification of pollution source-specific ecotoxicological risk profiles: none of the bioassays were significantly associated with reference locations nor with multiple location types, while horticulture locations were significantly characterized by anti-AR and anti-PR activity and cytotoxicity, and WWTP sites by ERα activity and toxicity in the in vivo bioassays. It is concluded that the presently employed advanced effect-based methods can readily be applied in surface water quality assessment and that the integration of chemical- and effect-based monitoring approaches will foster future-proof water quality assessment strategies on the road to a non-toxic environment.


Asunto(s)
Contaminantes Químicos del Agua/análisis , Calidad del Agua , Ecotoxicología , Monitoreo del Ambiente , Compuestos Orgánicos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA