Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 59(33): 14086-14090, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32365255

RESUMEN

Perfluorinated alkylated substances (PFASs) are widely used in industrial and commercial applications, leading to a widespread occurrence of these persistent and harmful contaminants in our environment. Removal of these compounds from surface and waste waters is being mandated by European and U.S. governments. Currently, there are no treatment techniques available that lower the concentrations of these compounds for large water bodies in a cost- and energy-efficient way. We hereby propose a hydrophobic, all-silica zeolite Beta material that is a highly selective and high-capacity adsorbent for PFASs, even in the presence of organic competitors. Advanced characterization data demonstrate that the adsorption process is driven by a very negative adsorption enthalpy and favorable steric factors.

2.
ChemSusChem ; 10(24): 4864-4871, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29064637

RESUMEN

Citric acid (CA) is an important organic acid that is produced on a large scale by fermentation. Current methods to recover CA from the fermentation broth require large amounts of chemicals and produce considerable amounts of waste, while not all CA can be recovered. The use of adsorbents can increase the degree of product recovery and reduce chemical consumption and waste generation. In this work, poly(4-vinylpyridine) (PVP) is evaluated as an adsorbent for CA recovery. It has a high adsorption capacity (>30 wt %) at low pH and a high selectivity for CA at moderate pH in the presence of sulfate anions, two conditions that are frequently encountered during CA recovery. PVP could be efficiently regenerated after adsorption using simple alcohols like methanol and ethanol. Considering selectivity and regeneration, PVP distinctly outperforms more common adsorbents for organic acids, including commercial strongly and weakly basic anion exchangers. The desirable adsorptive features of PVP for CA can be attributed to the low basicity of the pyridine group.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA