Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Res Toxicol ; 26(3): 336-46, 2013 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-23383871

RESUMEN

Testing chemicals for their endocrine-disrupting potential, including interference with estrogen receptor (ER) signaling, is an important aspect of chemical safety testing. Because of the practical drawbacks of animal testing, the development of in vitro alternatives for the uterotrophic assay and other in vivo (anti)estrogenicity tests has high priority. It was previously demonstrated that an in vitro assay that profiles ligand-induced binding of ERα to a microarray of coregulator-derived peptides might be a valuable candidate for a panel of in vitro assays aiming at an ultimate replacement of the uterotrophic assay. In the present study, the reproducibility and robustness of this coregulator binding assay was determined by measuring the binding profiles of 14 model compounds that are recommended by the Office of Prevention, Pesticides and Toxic Substances for testing laboratory proficiency in estrogen receptor transactivation assays. With a median coefficient of variation of 5.0% and excellent correlation (R(2) = 0.993) between duplicate measurements, the reproducibility of the ERα-coregulator binding assay was better than the reproducibility of other commonly used in vitro ER functional assays. In addition, the coregulator binding assay is correctly predicting the estrogenicity for 13 out of 14 compounds tested. When the potency of the ER-agonists to induce ERα-coregulator binding was compared to their ER binding affinity, their ranking was similar, and the correlation between the EC50 values was excellent (R(2) = 0.96), as was the correlation with their potency in a transactivation assay (R(2) = 0.94). Moreover, when the ERα-coregulator binding profiles were hierarchically clustered using Euclidian cluster distance, the structurally related compounds were found to cluster together, whereas the steroid test compounds having an aromatic A-ring were separated from those with a cyclohexene A-ring. We concluded that this assay is capable of distinguishing ERα agonists and antagonists and that it even reflects the structural similarity of ERα agonists, indicating a potential to achieve identification and classification of ERα endocrine disruptors with high fidelity.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Disruptores Endocrinos/química , Disruptores Endocrinos/farmacología , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/metabolismo , Análisis por Matrices de Proteínas/métodos , Línea Celular , Antagonistas de Estrógenos/química , Antagonistas de Estrógenos/farmacología , Humanos , Ligandos , Unión Proteica , Reproducibilidad de los Resultados
2.
Environ Toxicol Chem ; 25(5): 1322-5, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16704064

RESUMEN

Acute toxicity tests with algae, daphnids, and fish are required for the classification and environmental risk assessment of chemicals. The degree of risk is determined by the lowest of these acute toxicity values. Many ecotoxicological programs are seeking to reduce the numbers of fish used in acute toxicity testing. The acute threshold test is a recently proposed strategy that uses, on average, only 10 (instead of 54) fish per chemical. We examined the consequences of reducing the number of fish used in toxicity testing on the ultimate outcome of risk assessments. We evaluated toxicity data sets for 507 compounds, including agrochemicals, industrial chemicals, and pharmaceuticals from our internal database. Theoretical applications of the acute threshold test gave similar results to those obtained with the standard fish median lethal concentration (LC50) test but required only 12% as many fish (3195 instead of 27,324 fish used for all compounds in the database). In 188 (90%) of the 208 cases for which a complete data set was available, the median effect concentration for algae or daphnids was lower than the LC50 for fish. These results show that replacement of the standard fish LC50 test by the acute threshold test would greatly reduce the number of fish needed for acute ecotoxicity testing without any loss of reliability.


Asunto(s)
Peces , Pruebas de Toxicidad , Animales , Daphnia/efectos de los fármacos , Eucariontes/efectos de los fármacos , Dosificación Letal Mediana , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA