Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Front Fungal Biol ; 4: 1086194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37746118

RESUMEN

This study explored the composition of the mycobiome in the rhizosphere of Inga seedlings in two different but neighboring forest ecosystems in the undisturbed tropical Amazon rainforest at the Tiputini Biodiversity Station in Ecuador. In terra firme plots, which were situated higher up and therefore typically outside of the influence of river floods, and in várzea plots, the lower part of the forest located near the riverbanks and therefore seasonally flooded, tree seedlings of the genus Inga were randomly collected and measured, and the rhizosphere soils surrounding the root systems was collected. Members of the Fabaceae family and the genus Inga were highly abundant in both forest ecosystems. Inga sp. seedlings collected in terra firme showed a lower shoot to root ratio compared to seedlings that were collected in várzea, suggesting that Inga seedlings which germinated in várzea soils could invest more resources in vegetative growth with shorter roots. Results of the physical-chemical properties of soil samples indicated higher proportions of N, Mo, and V in terra firme soils, whereas várzea soils present higher concentrations of all other macro- and micronutrients, which confirmed the nutrient deposition effect of seasonal flooding by the nearby river. ITS metabarcoding was used to explore the mycobiome associated with roots of the genus Inga. Bioinformatic analysis was performed using Qiime 2 to calculate the alpha and beta diversity, species taxonomy and the differential abundance of fungi and arbuscular mycorrhizal fungi. The fungal community represented 75% of the total ITS ASVs, and although present in all samples, the subphylum Glomeromycotina represented 1.42% of all ITS ASVs with annotations to 13 distinct families, including Glomeraceae (72,23%), Gigasporaceae (0,57%), Acaulosporaceae (0,49%). AMF spores of these three AMF families were morphologically identified by microscopy. Results of this study indicate that AMF surround the rhizosphere of Inga seedlings in relatively low proportions compared to other fungal groups but present in both terra firme and várzea Neotropical ecosystems.

3.
Plants (Basel) ; 10(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073325

RESUMEN

Mineral nutrients are essential for plant growth and reproduction, yet only a few studies connect the nutritional status to plant innate immunity. The backbone of plant defense response is mainly controlled by two major hormones: salicylic acid (SA) and jasmonic acid (JA). This study investigated changes in the macronutrient concentration (deficiency/excess of nitrogen, phosphorus, potassium, magnesium, and sulfur) on the expression of PR1, a well-characterized marker in the SA-pathway, and PDF1.2 and LOX2 for the JA-pathway, analyzing plants carrying the promoter of each gene fused to GUS as a reporter. After histochemical GUS assays, we determined that PR1 gene was strongly activated in response to sulfur (S) deficiency. Using RT-PCR, we observed that the induction of PR1 depended on the function of Non-expressor of Pathogenesis-Related gene 1 (NPR1) and SA accumulation, as PR1 was not expressed in npr1-1 mutant and NahG plants under S-deprived conditions. Plants treated with different S-concentrations showed that total S-deprivation was required to induce SA-mediated defense responses. Additionally, bioassays revealed that S-deprived plants, induced resistance to the hemibiotrophic pathogen Pseudomonas syringae pv. DC3000 and increase susceptibility to the necrotrophic Botrytis cinerea. In conclusion, we observed a relationship between S and SA/JA-dependent defense mechanisms in Arabidopsis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA