Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21258694

RESUMEN

Surveys are a crucial tool for understanding public opinion and behavior, and their accuracy depends on maintaining statistical representativeness of their target populations by minimizing biases from all sources. Increasing data size shrinks confidence intervals but magnifies the impact of survey bias - an instance of the Big Data Paradox 1. Here we demonstrate this paradox in estimates of first-dose COVID-19 vaccine uptake in US adults: Delphi-Facebook 2,3 (about 250,000 responses per week) and Census Household Pulse 4 (about 75,000 per week). By May 2021, Delphi-Facebook overestimated uptake by 17 percentage points and Census Household Pulse by 14, compared to a benchmark from the Centers for Disease Control and Prevention (CDC). Moreover, their large data sizes led to minuscule margins of error on the incorrect estimates. In contrast, an Axios-Ipsos online panel 5 with about 1,000 responses following survey research best practices 6 provided reliable estimates and uncertainty. We decompose observed error using a recent analytic framework 1 to explain the inaccuracy in the three surveys. We then analyze the implications for vaccine hesitancy and willingness. We show how a survey of 250,000 respondents can produce an estimate of the population mean that is no more accurate than an estimate from a simple random sample of size 10. Our central message is that data quality matters far more than data quantity, and compensating the former with the latter is a mathematically provable losing proposition.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20197376

RESUMEN

Following initial declines, in mid 2020, a resurgence in transmission of novel coronavirus disease (COVID-19) has occurred in the United States and parts of Europe. Despite the wide implementation of non-pharmaceutical interventions, it is still not known how they are impacted by changing contact patterns, age and other demographics. As COVID-19 disease control becomes more localised, understanding the age demographics driving transmission and how these impacts the loosening of interventions such as school reopening is crucial. Considering dynamics for the United States, we analyse aggregated, age-specific mobility trends from more than 10 million individuals and link these mechanistically to age-specific COVID-19 mortality data. In contrast to previous approaches, we link mobility to mortality via age-specific contact patterns and use this rich relationship to reconstruct accurate transmission dynamics. Contrary to anecdotal evidence, we find little support for age-shifts in contact and transmission dynamics over time. We estimate that, until August, 63.4% [60.9%-65.5%] of SARS-CoV-2 infections in the United States originated from adults aged 20-49, while 1.2% [0.8%-1.8%] originated from children aged 0- 9. In areas with continued, community-wide transmission, our transmission model predicts that re-opening kindergartens and elementary schools could facilitate spread and lead to additional COVID-19 attributable deaths over a 90-day period. These findings indicate that targeting interventions to adults aged 20-49 are an important consideration in halting resurgent epidemics and preventing COVID-19-attributable deaths when kindergartens and elementary schools reopen.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20152355

RESUMEN

As of 1st June 2020, the US Centers for Disease Control and Prevention reported 104,232 confirmed or probable COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most severely impacted country. We jointly modelled the US epidemic at the state-level, using publicly available death data within a Bayesian hierarchical semi-mechanistic framework. For each state, we estimate the number of individuals that have been infected, the number of individuals that are currently infectious and the time-varying reproduction number (the average number of secondary infections caused by an infected person). We used changes in mobility to capture the impact that non-pharmaceutical interventions and other behaviour changes have on the rate of transmission of SARS-CoV-2. Nationally, we estimated 3.7% [3.4%-4.0%] of the population had been infected by 1st June 2020, with wide variation between states, and approximately 0.01% of the population was infectious. We also demonstrated that good model forecasts of deaths for the next 3 weeks with low error and good coverage of our credible intervals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA