RESUMEN
Yeasts have been widely used as a model to better understand cell cycle mechanisms and how nutritional and genetic factors can impact cell cycle progression. While nitrogen scarcity is well known to modulate cell cycle progression, the relevance of nitrogen excess for microorganisms has been overlooked. In our previous work, we observed an absence of proper entry into the quiescent state in Hanseniaspora vineae and identified a potential link between this behavior and nitrogen availability. Furthermore, the Hanseniaspora genus has gained attention due to a significant loss of genes associated with DNA repair and cell cycle. Thus, the aim of our study was to investigate the effects of varying nitrogen concentrations on H. vineae's cell cycle progression. Our findings demonstrated that nitrogen excess, regardless of the source, disrupts cell cycle progression and induces G2/M arrest in H. vineae after reaching the stationary phase. Additionally, we observed a viability decline in H. vineae cells in an ammonium-dependent manner, accompanied by increased production of reactive oxygen species, mitochondrial hyperpolarization, intracellular acidification, and DNA fragmentation. Overall, our study highlights the events of the cell cycle arrest in H. vineae induced by nitrogen excess and attempts to elucidate the possible mechanism triggering this absence of proper entry into the quiescent state.
Asunto(s)
Hanseniaspora , Hanseniaspora/metabolismo , Apoptosis , Puntos de Control de la Fase G2 del Ciclo Celular , Línea Celular Tumoral , Nitrógeno/metabolismoRESUMEN
Apiculate yeasts belonging to the genus Hanseniaspora are predominant on grapes and other fruits. While some species, such as Hanseniaspora uvarum, are well known for their abundant presence in fruits, they are generally characterized by their detrimental effect on fermentation quality because the excessive production of acetic acid. However, the species Hanseniaspora vineae is adapted to fermentation and currently is considered as an enhancer of positive flavour and sensory complexity in foods. Since 2002, we have been isolating strains from this species and conducting winemaking processes with them. In parallel, we also characterized this species from genes to metabolites. In 2013, we sequenced the genomes of two H. vineae strains, being these the first apiculate yeast genomes determined. In the last 10 years, it has become possible to understand its biology, discovering very peculiar features compared to the conventional Saccharomyces yeasts, such as a natural and unique G2 cell cycle arrest or the elucidation of the mandelate pathway for benzenoids synthesis. All these characteristics contribute to phenotypes with proved interest from the biotechnological point of view for winemaking and the production of other foods.
Asunto(s)
Hanseniaspora , Vino , Hanseniaspora/genética , Fermentación , Vino/análisis , Levaduras/genética , BiologíaRESUMEN
Yeasts of the genus Hanseniaspora gained notoriety in the last years due to their contribution to wine quality, and their loss of several genes, mainly related to DNA repair and cell cycle processes. Based on genomic data from many members of this genus, they have been classified in two well defined clades: the "faster-evolving linage" (FEL) and the "slower-evolving lineage" (SEL). In this context, we had detected that H. vineae exhibited a rapid loss of cell viability in some conditions during the stationary phase compared to H. uvarum and S. cerevisiae. The present work aimed to evaluate the viability and cell cycle progression of representatives of Hanseniaspora species along their growth in an aerobic and discontinuous system. Cell growth, viability and DNA content were determined by turbidity, Trypan Blue staining, and flow cytometry, respectively. Results showed that H. uvarum and H. opuntiae (representing FEL group), and H. osmophila (SEL group) exhibited a typical G1/G0 (1C DNA) arrest during the stationary phase, as S. cerevisiae. Conversely, the three strains studied here of H. vineae (SEL group) arrested at G2/M stages of cell cycle (2C DNA), and lost viability rapidly when enter the stationary phase. These results showed that H. vineae have a unique cell cycle behavior that will contribute as a new eukaryotic model for future studies of genetic determinants of yeast cell cycle control and progression.
RESUMEN
Benzenoids are compounds associated with floral and fruity flavours in flowers, fruits and leaves and present a role in hormonal signalling in plants. These molecules are produced by the phenyl ammonia lyase pathway. However, some yeasts can also synthesize them from aromatic amino acids using an alternative pathway that remains unknown. Hanseniaspora vineae can produce benzenoids at levels up to two orders of magnitude higher than Saccharomyces species, so it is a model microorganism for studying benzenoid biosynthesis pathways in yeast. According to their genomes, several enzymes have been proposed to be involved in a mandelate pathway similar to that described for some prokaryotic cells. Among them, the ARO10 gene product could present benzoylformate decarboxylase activity. This enzyme catalyses the decarboxylation of benzoylformate into benzaldehyde at the end of the mandelate pathway in benzyl alcohol formation. Two homologous genes of ARO10 were found in the two sequenced H. vineae strains. In this study, nine other H. vineae strains were analysed to detect the presence and per cent homology of ARO10 sequences by PCR using specific primers designed for this species. Also, the copy number of the genes was estimated by quantitative PCR. To verify the relation of ARO10 with the production of benzyl alcohol during fermentation, a deletion mutant in the ARO10 gene of Saccharomyces cerevisiae was used. The two HvARO10 paralogues were analysed and compared with other α-ketoacid decarboxylases at the sequence and structural level.
Asunto(s)
Derivados del Benceno/metabolismo , Vías Biosintéticas/genética , Hanseniaspora/genética , Piruvato Descarboxilasa/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcriptoma , Benzaldehídos/metabolismo , Alcohol Bencilo/metabolismo , Fermentación , Hanseniaspora/metabolismoRESUMEN
Benzenoid-derived metabolites act as precursors for a wide variety of products involved in essential metabolic roles in eukaryotic cells. They are synthesized in plants and some fungi through the phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) pathways. Ascomycete yeasts and animals both lack the capacity for PAL/TAL pathways, and metabolic reactions leading to benzenoid synthesis in these organisms have remained incompletely known for decades. Here, we show genomic, transcriptomic, and metabolomic evidence that yeasts use a mandelate pathway to synthesize benzenoids, with some similarities to pathways used by bacteria. We conducted feeding experiments using a synthetic fermentation medium that contained either 13C-phenylalanine or 13C-tyrosine, and, using methylbenzoylphosphonate (MBP) to inhibit benzoylformate decarboxylase, we were able to accumulate intracellular intermediates in the yeast Hanseniaspora vineae To further confirm this pathway, we tested in separate fermentation experiments three mutants with deletions in the key genes putatively proposed to form benzenoids (Saccharomyces cerevisiaearo10Δ, dld1Δ, and dld2Δ strains). Our results elucidate the mechanism of benzenoid synthesis in yeast through phenylpyruvate linked with the mandelate pathway to produce benzyl alcohol and 4-hydroxybenzaldehyde from the aromatic amino acids phenylalanine and tyrosine, as well as sugars. These results provide an explanation for the origin of the benzoquinone ring, 4-hydroxybenzoate, and suggest that Aro10p has benzoylformate and 4-hydroxybenzoylformate decarboxylase functions in yeast.IMPORTANCE We present here evidence of the existence of the mandelate pathway in yeast for the synthesis of benzenoids. The link between phenylpyruvate- and 4-hydroxyphenlypyruvate-derived compounds with the corresponding synthesis of benzaldehydes through benzoylformate decarboxylation is demonstrated. Hanseniaspora vineae was used in these studies because of its capacity to produce benzenoid derivatives at a level 2 orders of magnitude higher than that produced by Saccharomyces Contrary to what was hypothesized, neither ß-oxidation derivatives nor 4-coumaric acid is an intermediate in the synthesis of yeast benzenoids. Our results might offer an answer to the long-standing question of the origin of 4-hydroxybenzoate for the synthesis of Q10 in humans.
Asunto(s)
Derivados del Benceno/metabolismo , Hanseniaspora/metabolismo , Ácidos Mandélicos/metabolismo , Redes y Vías MetabólicasRESUMEN
Hanseniaspora is the main genus of the apiculate yeast group that represents approximately 70% of the grape-associated microflora. Hanseniaspora vineae is emerging as a promising species for quality wine production compared to other non-Saccharomyces species. Wines produced by H. vineae with Saccharomyces cerevisiae consistently exhibit more intense fruity flavors and complexity than wines produced by S. cerevisiae alone. In this work, genome sequencing, assembling, and phylogenetic analysis of two strains of H. vineae showed that it is a member of the Saccharomyces complex and it diverged before the whole-genome duplication (WGD) event from this clade. Specific flavor gene duplications and absences were identified in the H. vineae genome compared to 14 fully sequenced industrial S. cerevisiae genomes. The increased formation of 2-phenylethyl acetate and phenylpropanoids such as 2-phenylethyl and benzyl alcohols might be explained by gene duplications of H. vineae aromatic amino acid aminotransferases (ARO8 and ARO9) and phenylpyruvate decarboxylases (ARO10). Transcriptome and aroma profiles under fermentation conditions confirmed these genes were highly expressed at the beginning of stationary phase coupled to the production of their related compounds. The extremely high level of acetate esters produced by H. vineae compared to that by S. cerevisiae is consistent with the identification of six novel proteins with alcohol acetyltransferase (AATase) domains. The absence of the branched-chain amino acid transaminases (BAT2) and acyl coenzyme A (acyl-CoA)/ethanol O-acyltransferases (EEB1) genes correlates with H. vineae's reduced production of branched-chain higher alcohols, fatty acids, and ethyl esters, respectively. Our study provides sustenance for understanding and potentially utilizing genes that determine fermentation aromas.IMPORTANCE The huge diversity of non-Saccharomyces yeasts in grapes is dominated by the apiculate genus Hanseniaspora Two native strains of Hanseniaspora vineae applied to winemaking because of their high oenological potential in aroma and fermentation performance were selected to obtain high-quality genomes. Here, we present a phylogenetic analysis and the complete transcriptome and aroma metabolome of H. vineae during three fermentation steps. This species produced significantly richer flavor compound diversity than Saccharomyces, including benzenoids, phenylpropanoids, and acetate-derived compounds. The identification of six proteins, different from S. cerevisiae ATF, with diverse acetyltransferase domains in H. vineae offers a relevant source of native genetic variants for this enzymatic activity. The discovery of benzenoid synthesis capacity in H. vineae provides a new eukaryotic model to dilucidate an alternative pathway to that catalyzed by plants' phenylalanine lyases.