RESUMEN
Zika virus (ZIKV) is a vector-borne disease that has rapidly spread during the year 2016 in more than 50 countries around the world. If a woman is infected during pregnancy, the virus can cause severe birth defects and brain damage in their babies. The virus can be transmitted through the bites of infected mosquitoes as well as through direct contact from human to human (e.g., sexual contact and blood transfusions). As an intervention for controlling the spread of the disease, we study a vaccination model for preventing Zika infections. Although there is no formal vaccine for ZIKV, The National Institute of Allergy and Infectious Diseases (part of the National Institutes of Health) has launched a vaccine trial at the beginning of August 2016 to control ZIKV transmission, patients who received the vaccine are expected to return within 44 weeks to determine if the vaccine is safe. Since it is important to understand ZIKV dynamics under vaccination, we formulate a vaccination model for ZIKV spread that includes mosquito as well as sexual transmission. We calculate the basic reproduction number of the model to analyze the impact of relatively, perfect and imperfect vaccination rates. We illustrate several numerical examples of the vaccination model proposed as well as the impact of the basic reproduction numbers of vector and sexual transmission and the effect of vaccination effort on ZIKV spread. Results show that high levels of sexual transmission create larger cases of infection associated with the peak of infected humans arising in a shorter period of time, even when a vaccine is available in the population. However, a high level of transmission of Zika from vectors to humans compared with sexual transmission represents that ZIKV will take longer to invade the population providing a window of opportunities to control its spread, for instance, through vaccination.