Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gels ; 10(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38247738

RESUMEN

In the present study, Fe3O4/poly(2-hydroxyethyl methacrylate-co-itaconic acid) magnetic hydrogels (MHGs) were prepared by in situ synthesis of Fe3O4 magnetic particles in hydrogels (HGs). The resulting magnetic hydrogels were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), a vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), and N2 adsorption-desorption. The effect of Fe3O4 on the swelling behavior and adsorption of methylene blue (MB) dye of the prepared hydrogel was studied. Parameters such as the dose, pH, contact time, and MB initial concentration were investigated. The results show that 75% (HG) and 91% (MHG) of MB (200 mg/L) were removed at doses of 2 mg/mL and 1 mg/mL, respectively, under a pH of 6.8 and a contact time of 10 min. The adsorption behavior followed the Langmuir isotherm model, indicating that the adsorption process takes place in monolayers and on homogeneous surfaces. The Langmuir capacities for MB adsorption using the HGs and MHGs were 78 and 174 mg/g, respectively. The adsorption kinetics followed a pseudo-second-order kinetic model. In addition, thermodynamic studies carried out show that the adsorption process is spontaneous and endothermic. Adsorption-desorption studies indicate that the magnetic hydrogel can remove MB for four cycles with removal efficiencies above 90%. Therefore, a MHG is suitable as an alternative material for MB adsorption.

2.
Polymers (Basel) ; 13(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466684

RESUMEN

This research focused on the synthesis of a functional alginate-based material via chemical modification processes with two steps: oxidation and reductive amination. In previous alginate functionalization with a target molecule such as cysteine, the starting material was purified and characterized by UV-Vis, 1H-NMR and HSQC. Additionally, the application of FT-IR techniques during each step of alginate functionalization was very useful, since new bands and spiked signals around the pyranose ring (1200-1000 cm-1) and anomeric region (1000-750 cm-1) region were identified by a second derivative. Additionally, the presence of C1-H1 of ß-D-mannuronic acid residue as well as C1-H1 of α-L-guluronic acid residue was observed in the FT-IR spectra, including a band at 858 cm-1 with characteristics of the N-H moiety from cysteine. The possibility of attaching cysteine molecules to an alginate backbone by oxidation and post-reductive amination processes was confirmed through 13C-NMR in solid state; a new peak at 99.2 ppm was observed, owing to a hemiacetal group formed in oxidation alginate. Further, the peak at 31.2 ppm demonstrates the presence of carbon -CH2-SH in functionalized alginate-clear evidence that cysteine was successfully attached to the alginate backbone, with 185 µmol of thiol groups per gram polymer estimated in alginate-based material by UV-Visible. Finally, it was observed that guluronic acid residue of alginate are preferentially more affected than mannuronic acid residue in the functionalization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA