Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 345: 118655, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37517092

RESUMEN

E-waste comprising plastics causes serious ecological problems due to low degradability, but it is capable of producing a high amount of energy by thermochemical conversion. Therefore, the current study focuses on generating clean syngas through plasma gasification of acrylonitrile butadiene styrene (ABS) based computer keyboard plastic waste (CKPW) using CO2 as a gasifying agent. The effect of feed rate, gas flow rate and plasma power on the syngas composition was studied. In addition, a comprehensive investigation of energy, exergy, economic and environmental analyses along with characterization of the obtained products was conducted to evaluate the performance of the system. Based on the experimental results, the optimum process parameters for producing syngas possessing a higher calorific value (15.80 MJ/m3) with a higher percentage of H2 (30.16 vol%) and CO (46.09 vol%) were estimated. The optimum feed flow rates of solid fuel and CO2 gas and torch power were estimated as 40 g/10 min, 0.5 lpm and 1.12 kW, respectively. At these conditions, the system could achieve a maximum energy and exergy efficiency of 46.06% and 44.34%, respectively, while the levelized cost of syngas (LCOSover) was estimated as 25.45 INR/kWh, including the social cost. Likewise, the lower values of the estimated global warming potential (370.19 gCO2eq/h) illustrate the better sustainability of the process. The obtained oil with the estimated LHV of 39.13 MJ/kg could be an alternative fuel for diesel and the residue containing a higher proportion of TiO2 has medical applications upon further enrichment. The reaction mechanism of ABS conversion to syngas under plasma gasification conditions is proposed.


Asunto(s)
Acrilonitrilo , Eliminación de Residuos , Eliminación de Residuos/métodos , Gases/análisis , Dióxido de Carbono , Butadienos , Plásticos , Estirenos
2.
J Environ Manage ; 231: 1241-1256, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30602249

RESUMEN

The utilization of fossil fuels leads to the emission of greenhouse gases into the environment. As a consequence, ozone layer depletion, global warming, acid rain, etc. are caused. Thus, alternate ways have to be planned to eradicate the detrimental effects of the usage of fossil fuels. As biomass is a renewable energy source, co-utilization of coal with biomass could significantly reduce carbon emission. In addition, chemical looping combustion (CLC) is a promising technology for the inherent capture of CO2 without any post-treatment of flue gas. Hence, the integration of co-combustion of solid fuel with CLC technology can produce clean energy in the context of carbon negative system. The present study addresses the issues and prospects of the co-CLC process of solid fuels such as coal and biomass. Low-cost oxygen carriers, which are suitable for the solid-CLC process, are elucidated. The effect of solid fuel based inherent constituents such as ash, volatile matter and tar on the performance of the CLC process is discussed. Furthermore, the beneficial and inhibitory effects of the co-combustion of solid fuels are elaborated. The formation and reduction mechanism of NOx and SOx pollutants during the CLC process are investigated. In addition, the effect of gasifying medium (CO2 and steam) during the co-CLC technology is also discussed. The performance of the CLC based thermal power plants is analyzed, and the results show a gain of 5-6% in net thermal efficiency, compared to a power system operating under conventional technology. The effect of the process parameters on gas conversion, char conversion, overall solid fuel conversion, combustion efficiency and CO2 yield is investigated. The investigation shows that the co-combustion based CLC is a potential technology for the implementation of carbon capture and storage (CCS) with a low energy penalty.


Asunto(s)
Carbón Mineral , Centrales Eléctricas , Biomasa , Combustibles Fósiles , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA