Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 10(1): 3130, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081898

RESUMEN

Vascular changes occur early in the development of obstructive airways disease. However, the vascular remodeling and dysfunction due to World Trade Center-Particulate Matter (WTC-PM) exposure are not well described and are therefore the focus of this investigation. C57Bl/6 female mice oropharyngeally aspirated 200 µg of WTC-PM53 or phosphate-buffered saline (PBS) (controls). 24-hours (24-hrs) and 1-Month (1-M) after exposure, echocardiography, micro-positron emission tomography(µ-PET), collagen quantification, lung metabolomics, assessment of antioxidant potential and soluble-receptor for advanced glycation end products (sRAGE) in bronchoalveolar lavage(BAL) and plasma were performed. 24-hrs post-exposure, there was a significant reduction in (1) Pulmonary artery(PA) flow-velocity and pulmonary ejection time(PET) (2) Pulmonary acceleration time(PAT) and PAT/PET, while (3) Aortic ejection time(AET) and velocity time integral(VTI) were increased, and (4) Aortic acceleration time (AAT)/AET, cardiac output and stroke volume were decreased compared to controls. 1-M post-exposure, there was also significant reduction of right ventricular diameter as right ventricle free wall thickness was increased and an increase in tricuspid E, A peaks and an elevated E/A. The pulmonary and cardiac standard uptake value and volume 1-M post-exposure was significantly elevated after PM-exposure. Similarly, α-smooth muscle actin(α-SMA) expression, aortic collagen deposition was elevated 1-M after PM exposure. In assessment of the metabolome, prominent subpathways included advanced glycation end products (AGEs), phosphatidylcholines, sphingolipids, saturated/unsaturated fatty acids, eicosanoids, and phospholipids. BAL superoxide dismutase(SOD), plasma total-antioxidant capacity activity, and sRAGE (BAL and plasma) were elevated after 24-hrs. PM exposure and associated vascular disease are a global health burden. Our study shows persistent WTC-Cardiorespiratory and Vascular Dysfunction (WTC-CaRVD), inflammatory changes and attenuation of antioxidant potential after PM exposure. Early detection of vascular disease is crucial to preventing cardiovascular deaths and future work will focus on further identification of bioactive therapeutic targets.


Asunto(s)
Modelos Animales de Enfermedad , Pulmón/efectos de los fármacos , Pulmón/diagnóstico por imagen , Material Particulado/efectos adversos , Respiración/efectos de los fármacos , Ataques Terroristas del 11 de Septiembre , Animales , Antioxidantes/metabolismo , Aorta/diagnóstico por imagen , Apoptosis , Lavado Broncoalveolar , Colágeno/química , Ecocardiografía , Femenino , Inflamación , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Fenotipo , Tomografía de Emisión de Positrones , Superóxido Dismutasa/metabolismo , Microtomografía por Rayos X
3.
Toxics ; 7(1)2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30704059

RESUMEN

Particulate matter (PM) exposure and metabolic syndrome (MetSyn) are both significant global health burdens. PM exposure has been implicated in the pathogenesis of MetSyn and cardiopulmonary diseases. Individuals with pre-existing MetSyn may be more susceptible to the detrimental effects of PM exposure. Our aim was to provide a narrative review of MetSyn/PM-induced systemic inflammation in cardiopulmonary disease, with a focus on prior studies of the World Trade Center (WTC)-exposed Fire Department of New York (FDNY). We included studies (1) published within the last 16-years; (2) described the epidemiology of MetSyn, obstructive airway disease (OAD), and vascular disease in PM-exposed individuals; (3) detailed the known mechanisms of PM-induced inflammation, MetSyn and cardiopulmonary disease; and (4) focused on the effects of PM exposure in WTC-exposed FDNY firefighters. Several investigations support that inhalation of PM elicits pulmonary and systemic inflammation resulting in MetSyn and cardiopulmonary disease. Furthermore, individuals with these preexisting conditions are more sensitive to PM exposure-related inflammation, which can exacerbate their conditions and increase their risk for hospitalization and chronic disease. Mechanistic research is required to elucidate biologically plausible therapeutic targets of MetSyn- and PM-induced cardiopulmonary disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA