Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
An Acad Bras Cienc ; 95(suppl 1): e20210439, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37646707

RESUMEN

Few studies have evaluated how climate is mechanistically related to species richness in mountain environments. We used path analysis to evaluate predictions of several mechanistic hypotheses based on their hypothesized mechanism relating climate with richness of darkling beetles (Coleoptera: Tenebrionidae). We modeled the influence of spatial covariation on climatic variables and tenebrionid richness. Results showed that richness peaks at mid elevations, chiefly influenced by precipitation and temperature, both directly and indirectly through geographic range sizes. The best fitting model explains 84% of the variance of tenebrionid richness. We suggest this pattern is induced by a water-energy balance along the altitudinal gradient. At low elevations, energy availability is high but water deficit may limit species richness; in contrast, at high elevations water availability is high, but energy deficit may limit species richness. These results suggest high susceptibility of the study region to future global climate change.


Asunto(s)
Cambio Climático , Escarabajos , Animales , Temperatura , Agua
2.
Sci Adv ; 9(19): eadh1455, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37172085

RESUMEN

We assessed the effect that electromagnetic field (EMF) exerts on honeybees' pollination efficiency using field and laboratory experiments. First, we measured levels of gene and protein expression in metabolic pathways involved in stress and behavioral responses elicited by EMF. Second, we assessed the effect of EMF on honeybee behavior and seed production by the honeybee-pollinated California poppy and, lastly, by measuring the consequences of pollination failure on plants' community richness and abundance. EMF exposure exerted strong physiological stress on honeybees as shown by the enhanced expression of heat-shock proteins and genes involved in antioxidant activity and affected the expression levels of behavior-related genes. Moreover, California poppy individuals growing near EMF received fewer honeybee visits and produced fewer seeds than plants growing far from EMF. Last, we found a hump-shaped relationship between EMF and plant species richness and plant abundance. Our study provides conclusive evidence of detrimental impacts of EMF on honeybee's pollination behavior, leading to negative effects on plant community.


Asunto(s)
Campos Electromagnéticos , Polinización , Humanos , Abejas , Animales , Polinización/fisiología , Campos Electromagnéticos/efectos adversos , Semillas/fisiología , Antioxidantes , Proteínas de Choque Térmico
3.
Proc Biol Sci ; 290(1990): 20221847, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36629108

RESUMEN

Species respond idiosyncratically to environmental variation, which may generate phenological mismatches. We assess the consequences of such mismatches for solitary bees. During 9 years, we studied flowering phenology and nesting phenology and demography of five wood-nesting solitary bee species representing a broad gradient of specialization/generalization in the use of floral resources. We found that the reproductive performance and population growth rate of bees tended to be lower with increasing nesting-flowering mismatches, except for the most generalized bee species. Our findings help elucidate the role of phenological mismatches for the demography of wild pollinators, which perform key ecosystem functions and provide important services for humanity. Furthermore, if climate change increases phenological mismatches in this system, we expect negative consequences of climate change for specialist bees.


Asunto(s)
Ecosistema , Reproducción , Abejas , Animales , Crecimiento Demográfico , Cambio Climático , Polinización , Flores
4.
Ecology ; 103(1): e03547, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34618911

RESUMEN

Understanding the impacts of global change on ecological communities is a major challenge in modern ecology. The gain or loss of particular species and the disruption of key interactions are both consequences and drivers of global change that can lead to the disassembly of ecological networks. We examined whether the disruption of a hummingbird-mistletoe-marsupial mutualism by the invasion of non-native species can have cascading effects on both pollination and seed dispersal networks in the temperate forest of Patagonia, Argentina. We focused on network motifs, subnetworks composed of a small number of species exhibiting particular patterns of interaction, to examine the structure and diversity of mutualistic networks. We found that the hummingbird-mistletoe-marsupial mutualism plays a critical role in the community by increasing the complexity of pollination and seed dispersal networks through supporting a high diversity of interactions. Moreover, we found that the disruption of this tripartite mutualism by non-native ungulates resulted in diverse indirect effects that led to less complex pollination and seed dispersal networks. Our results demonstrate that the gains and losses of particular species and the alteration of key interactions can lead to cascading effects in the community through the disassembly of mutualistic networks.


Asunto(s)
Polinización , Dispersión de Semillas , Animales , Aves , Ecosistema , Simbiosis
5.
J Anim Ecol ; 91(1): 74-85, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34558076

RESUMEN

It is not uncommon for one or a few species, and their interactions, to have disproportionate effects on other species in ecological communities. Such keystone interactions might affect how communities respond to the invasion of non-native species by preventing or inhibiting the establishment, spread or impact of non-native species. We explore whether a keystone mutualism among a hummingbird-mistletoe-marsupial promotes ecological resistance to an invasive pollinator, the bumblebee Bombus terrestris, by comparing data collected at sites prior to bumblebee invasion to data collected 11 years after the invasion in sites with and without the keystone mutualism. We built pollination networks and focused on network motifs, regarded as building blocks of networks, to identify the central pollinators and estimate the change in their interactions after invasion of B. terrestris. We also estimated the interaction rewiring across the season in post-invasion networks and tested it as a possible mechanism explaining how the keystone mutualism increased ecological resistance to invasion. We found two times more species in post-invasion sites with the keystone mutualism than in post-invasion sites without the keystone mutualism. Moreover, we found that invasive bumblebee reduced the strength and interaction niche of the five central pollinator species while increasing its own strength and interaction niche, suggesting a replacement of interactions. Also, we found that the keystone mutualism promoted resistance to B. terrestris invasion by reducing its negative impacts on central species. In the presence of the keystone mutualism, central species had three times more direct interactions than in sites without this keystone mutualism. The higher interaction rewiring, after invasion of B. terrestris, in sites with the keystone mutualism indicates greater chances of central pollinators to form new interactions and reduces their competence for resources with the non-native bumblebee. Our results demonstrate that a keystone mutualism can enhance community resistance against the impacts of a non-native invasive pollinator by increasing species diversity and promoting interaction rewiring in the community. This study suggests that the conservation of mutualisms, especially those considered keystone, could be essential for long-term preservation of natural communities under current and future impacts of global change.


Es común que una o unas pocas especies y sus interacciones tengan efectos desproporcionado sobre otras especies en las comunidades. Estas especies y sus interacciones claves podrían afectar el modo en que las comunidades responden a la invasión de especies no nativas al prevenir o disminuir su establecimiento, su propagación o el impacto de las mismas. En este estudio evaluamos si un mutualismo clave entre un colibrí, un muérdago y un marsupial promueve la resistencia de la comunidad frente a un polinizador invasor, el abejorro Bombus terrestris, mediante la comparación de datos colectados en sitios previos a la invasión del abejorro y datos colectados 11 años después de su invasión, en sitios con y sin el mutualismo clave. Construimos redes ecológicas planta-polinizador y nos centramos en los modos de interacción ("interaction motifs"), los cuales son usados como bloques en la construcción de las redes, para identificar los polinizadores centrales y estimar el cambio en sus interacciones después de la invasión de B. terrestris. Además, en las redes posteriores a la invasión estimamos la reconexión de interacciones a lo largo de la temporada y la evaluamos como un posible mecanismo mediante la cual el mutualismo clave aumentó la resistencia a la invasión. En sitios posteriores a la invasión con el mutualismo clave encontramos dos veces más especies que en sitios posteriores a la invasión ausentes de éste. Además, en los sitios ausentes del mutualismo clave, encontramos que el abejorro invasor redujo la fuerza y el nicho de interacción de los cinco polinizadores centrales mientras incrementó su propia fuerza y nicho de interacciones, sugiriendo un reemplazo de interacciones. Asimismo, encontramos que el mutualismo clave promovió la resistencia de la comunidad a la invasión de B. terrestris al reducir sus impactos negativos sobre las especies centrales. En presencia del mutualismo clave, las especies centrales presentaron tres veces más interacciones directas que en sitios ausentes de esta interacción. La gran reconexión de interacciones encontrada en sitios posteriores a la invasión con el mutualismo clave indica mayores probabilidades de que los polinizadores centrales formen nuevas interacciones y reduzcan la competencia por recursos con el abejorro no nativo. Nuestros resultados demuestran que un mutualismo clave puede mejorar la resistencia de la comunidad frente a los impactos de especies invasoras al incrementar la diversidad de especies y promover la reconexión de interacciones en la comunidad. Este estudio sugiere que la conservación de las interacciones mutualistas, principalmente aquellas consideradas claves, podría ser esencial para preservar las comunidades naturales frente a los impactos del cambio global.


Asunto(s)
Polinización , Simbiosis , Animales , Abejas , Aves , Estaciones del Año
6.
Oecologia ; 196(3): 815-824, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34110499

RESUMEN

Land-use generates multiple stress factors, and we need to understand their effects on plant-plant interactions to predict the consequences of land-use intensification. The stress-gradient hypothesis predicts that the relative strength of positive and negative interactions changes inversely under increasing environmental stress. However, the outcome of interactions also depends on stress factor's complexity, the scale of analysis, and the role of functional traits in structuring the community. We evaluated plant-plant co-occurrences in a temperate forest, aiming to identify changes in pairwise and network metrics under increasing silvopastoral use intensity. Proportionally, positive co-occurrences were more frequent under high than low use, while negative co-occurrences were more frequent under low than high. Networks of negative co-occurrences showed higher centralization under low use, while networks of positive co-occurrences showed lower modularity and higher centralization under high use. We found a partial relationship between co-occurrences and key functional traits expected to mediate facilitation and competition processes. Our results shows that the stress-gradient hypothesis predicts changes in spatial co-occurrences even when two stress factors interact in a complex way. Networks of negative co-occurrences showed a hierarchical effect of dominant species under low use intensity. But positive co-occurrence network structure partially presented the characteristics expected if the facilitation was an important mechanism characterizing the community under high disturbance intensity. The partial relationship between functional traits and co-occurrences may indicate that other factors besides biotic interactions may be structuring the observed negative spatial associations in temperate Patagonian forests.


Asunto(s)
Bosques , Plantas , Estrés Fisiológico
7.
Oecologia ; 193(4): 913-924, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32772157

RESUMEN

In semi-arid environments, the marked contrast in temperature and precipitation over the year strongly shapes ecological communities. The composition of species and their ecological interactions within a community may vary greatly over time. Although intra-annual variations are often studied, empirical information on how plant-bird relationships are structured within and among years, and how their drivers may change over time are still limited. In this study, we analyzed the temporal dynamics of the structure of plant-hummingbird interaction networks by evaluating changes in species richness, diversity of interactions, modularity, network specialization, nestedness, and ß-diversity of interactions throughout four years in a Mexican xeric shrubland landscape. We also evaluated if the relative importance of abundance, phenology, morphology, and nectar sugar content consistently explains the frequency of pairwise interactions between plants and hummingbirds across different years. We found that species richness, diversity of interactions, nestedness, and network specialization did vary within and among years. We also observed that the ß-diversity of interactions was high among years and was mostly associated with species turnover (i.e., changes in species composition), with a minor contribution of interaction rewiring (i.e., shifting partner species at different times). Finally, the temporal co-occurrence of hummingbird and plant species among months was the best predictor of the frequency of pairwise interactions, and this pattern was consistent within and among years. Our study underscores the importance of considering the temporal scale to understand how changes in species phenologies, and the resulting temporal co-occurrences influence the structure of interaction networks.


Asunto(s)
Aves , Polinización , Animales , México , Néctar de las Plantas , Plantas
8.
J Anim Ecol ; 89(7): 1670-1677, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32215907

RESUMEN

Mutualistic networks are highly dynamic, characterized by high temporal turnover of species and interactions. Yet, we have a limited understanding of how the internal structure of these networks and the roles species play in them vary through time. We used 6 years of observation data and a novel statistical method (dynamic stochastic block models) to assess how network structure and species' structural position within the network change throughout subseasons of the flowering season and across years in a quantitative plant-pollinator network from a dryland ecosystem in Argentina. Our analyses revealed a core-periphery structure persistent through subseasons and years. Yet, species structural position as core or peripheral was highly dynamic: virtually all species that were at the core in some subseasons were also peripheral in other subseasons, while many other species always remained peripheral. Our results illuminate our understanding of the dynamics of mutualistic networks and have important implications for ecosystem management and conservation.


Asunto(s)
Ecosistema , Polinización , Animales , Argentina , Insectos , Plantas
9.
Ecology ; 100(11): e02883, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31494930

RESUMEN

Under a metacommunity framework, the spatial configuration of habitat fragments could determine local community structure. Yet, quantifying fragment connectivity is challenging, as it depends on multiple variables at several geographical scales. We assessed the extent to which fragment connectivity and area explain patterns in interaction structure among four herbivore guilds and their host plants in a metacommunity. We propose an integrative connectivity metric including geographic distance, neighboring fragment area and similarity in resource composition as an extension of Hanski's classic metric. We then used nonlinear models to assess whether fragment connectivity and area predicted link richness and similarity in link composition. We found that link richness was always negatively related to connectivity but at different geographic scales depending on the herbivore guild. In contrast, while link composition was also related to connectivity, the direction and strength of this relationship varied among herbivore guilds and type of link composition (qualitative or quantitative). Furthermore, focal fragment area was not an important determinant of interaction diversity in local communities. Our findings emphasize resource similarity as a novel dimension of fragment connectivity relevant in explaining interaction diversity patterns in natural trophic networks.


Asunto(s)
Ecosistema , Herbivoria , Biodiversidad , Plantas
10.
Sci Rep ; 8(1): 14873, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30291278

RESUMEN

Plant-pollinator systems are essential for ecosystem functioning, which calls for an understanding of the determinants of their robustness to environmental threats. Previous studies considering such robustness have focused mostly on species' connectivity properties, particularly their degree. We hypothesized that species' phenological attributes are at least as important as degree as determinants of network robustness. To test this, we combined dynamic modeling, computer simulation and analysis of data from 12 plant-pollinator networks with detailed information of topology of interactions as well as species' phenology of plant flowering and pollinator emergence. We found that phenological attributes are strong determinants of network robustness, a result consistent across the networks studied. Plant species persistence was most sensitive to increased larval mortality of pollinators that start earlier or finish later in the season. Pollinator persistence was especially sensitive to decreased visitation rates and increased larval mortality of specialists. Our findings suggest that seasonality of climatic events and anthropic impacts such as the release of pollutants is critical for the future integrity of terrestrial biodiversity.


Asunto(s)
Insectos/fisiología , Polinización , Animales , Biodiversidad , Cambio Climático , Simulación por Computador , Ecosistema , Magnoliopsida/fisiología , Modelos Biológicos , Estaciones del Año
11.
Ecotoxicol Environ Saf ; 148: 571-577, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29127819

RESUMEN

Cement dust from cement plants around the world has multiple negative effects on organisms and their environment. Cement's effects come from its strongly alkaline nature and high content of heavy metals. Previous studies on plants have documented that cement dust deposition can influence plant vegetative growth, the lipid and ionic composition of tissues, and foliar temperature. Here we evaluate the effects of cement dust coming from a plant in western Argentina on the morphology of the cactus Tephrocactus aoracanthus. In sites located at 0.15km, 2km and 6km from the cement plant, we recorded five morphological attributes of the cactus: length and number of spines, cladode (stem) diameter, and fresh and dry weight. We also transplanted plants in situ to evaluate the effect of distance from the cement plant. In addition, we set an experiment spreading cement dust weekly on the aerial and ground parts of the cactus. Results of our field observational and experimental studies indicate that cement dust deposition on aerial parts of the plant leads to increased spine length, number of spines, and wet and dry weights of cladodes.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Cactaceae/efectos de los fármacos , Materiales de Construcción/toxicidad , Polvo/análisis , Metales Pesados/toxicidad , Contaminantes del Suelo/toxicidad , Argentina , Biomasa , Cactaceae/crecimiento & desarrollo , Clima Desértico , Fotosíntesis/efectos de los fármacos , Suelo/química
12.
Ecology ; 99(1): 21-28, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29082521

RESUMEN

Ecological interactions are highly dynamic in time and space. Previous studies of plant-animal mutualistic networks have shown that the occurrence of interactions varies substantially across years. We analyzed interannual variation of a quantitative mutualistic network, in which links are weighted by interaction frequency. The network was sampled over six consecutive years, representing one of the longest time series for a community-wide mutualistic network. We estimated the interannual similarity in interactions and assessed the determinants of their persistence. The occurrence of interactions varied greatly among years, with most interactions seen in only one year (64%) and few (20%) in more than two years. This variation was associated with the frequency and position of interactions relative to the network core, so that the network consisted of a persistent core of frequent interactions and many peripheral, infrequent interactions. Null model analyses suggest that species abundances play a substantial role in generating these patterns. Our study represents an important step in the study of ecological networks, furthering our mechanistic understanding of the ecological processes driving the temporal persistence of interactions.


Asunto(s)
Plantas , Simbiosis , Animales , Ecosistema , Polinización
13.
J Anim Ecol ; 86(6): 1372-1379, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28696537

RESUMEN

Fire represents a frequent disturbance in many ecosystems, which can affect plant-pollinator assemblages and hence the services they provide. Furthermore, fire events could affect the architecture of plant-pollinator interaction networks, modifying the structure and function of communities. Some pollinators, such as wood-nesting bees, may be particularly affected by fire events due to damage to the nesting material and its long regeneration time. However, it remains unclear whether fire influences the structure of bee-plant interactions. Here, we used quantitative plant-wood-nesting bee interaction networks sampled across four different post-fire age categories (from freshly-burnt to unburnt sites) in an arid ecosystem to test whether the abundance of wood-nesting bees, the breadth of resource use and the plant-bee community structure change along a post-fire age gradient. We demonstrate that freshly-burnt sites present higher abundances of generalist than specialist wood-nesting bees and that this translates into lower network modularity than that of sites with greater post-fire ages. Bees do not seem to change their feeding behaviour across the post-fire age gradient despite changes in floral resource availability. Despite the effects of fire on plant-bee interaction network structure, these mutualistic networks seem to be able to recover a few years after the fire event. This result suggests that these interactions might be highly resilient to this type of disturbance.


Asunto(s)
Abejas/fisiología , Incendios , Fenómenos Fisiológicos de las Plantas , Polinización , Animales , Argentina , Femenino , Polen , Dinámica Poblacional
14.
Biol Rev Camb Philos Soc ; 92(1): 22-42, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26290132

RESUMEN

While average temperature is likely to increase in most locations on Earth, many places will simultaneously experience higher variability in temperature, precipitation, and other climate variables. Although ecologists and evolutionary biologists widely recognize the potential impacts of changes in average climatic conditions, relatively little attention has been paid to the potential impacts of changes in climatic variability and extremes. We review the evidence on the impacts of increased climatic variability and extremes on physiological, ecological and evolutionary processes at multiple levels of biological organization, from individuals to populations and communities. Our review indicates that climatic variability can have profound influences on biological processes at multiple scales of organization. Responses to increased climatic variability and extremes are likely to be complex and cannot always be generalized, although our conceptual and methodological toolboxes allow us to make informed predictions about the likely consequences of such climatic changes. We conclude that climatic variability represents an important component of climate that deserves further attention.


Asunto(s)
Evolución Biológica , Cambio Climático , Ecología , Temperatura
15.
PeerJ ; 4: e2250, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27547556

RESUMEN

BACKGROUND: Diverse flower communities are more stable in floral resource production along the flowering season, but the question about how the diversity and stability of resources affect pollinator reproduction remains open. High plant diversity could favor short foraging trips, which in turn would enhance bee fitness. In addition to plant diversity, greater temporal stability of floral resources in diverse communities could favor pollinator fitness because such communities are likely to occupy the phenological space more broadly, increasing floral availability for pollinators throughout the season. In addition, this potential effect of flower diversity on bee reproduction could be stronger for generalist pollinators because they can use a broader floral spectrum. Based on above arguments we predicted that pollinator reproduction would be positively correlated to flower diversity, and to temporal stability in flower production, and that this relationship would be stronger for the most generalized pollinator species. MATERIALS AND METHODS: Using structural equation models, we evaluated the effect of these variables and other ecological factors on three estimates of bee reproduction (average number of brood cells per nest per site, total number of brood cells per site, and total number of nests per site), and whether such effects were modulated by bee generalization on floral resources. RESULTS: Contrary to our expectations, flower diversity had no effect on bee reproduction, stability in flower production had a weakly negative effect on one of the bee reproductive variables, and the strength of the fitness-diversity relationship was unrelated to bee generalization. In contrast, elevation had a negative effect on bee reproduction, despite the narrow elevation range encompassed by our sites. DISCUSSION: Flower diversity did not affect the reproduction of the solitary bees studied here. This result could stem from the context dependence of the diversity-stability relationship, given that elevation had a positive effect on flower diversity but a negative effect on bee reproduction. Although high temporal stability in flower production is expected to enhance pollinator reproduction, in our study it had a weakly negative-instead of positive-effect on the average number of brood cells per nest. Other environmental factors that vary with elevation could influence bee reproduction. Our study focused on a small group of closely-related bee species, which cautions against generalization of our findings to other groups of pollinators. More studies are clearly needed to assess the extent to which pollinator demography is influenced by the diversity of floral resources.

16.
Ecol Lett ; 19(1): 4-11, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26498731

RESUMEN

A frequent observation in plant-animal mutualistic networks is that abundant species tend to be more generalised, interacting with a broader range of interaction partners than rare species. Uncovering the causal relationship between abundance and generalisation has been hindered by a chicken-and-egg dilemma: is generalisation a by-product of being abundant, or does high abundance result from generalisation? Here, we analyse a database of plant-pollinator and plant-seed disperser networks, and provide strong evidence that the causal link between abundance and generalisation is uni-directional. Specifically, species appear to be generalists because they are more abundant, but the converse, that is that species become more abundant because they are generalists, is not supported by our analysis. Furthermore, null model analyses suggest that abundant species interact with many other species simply because they are more likely to encounter potential interaction partners.


Asunto(s)
Cadena Alimentaria , Modelos Biológicos , Plantas , Polinización , Dispersión de Semillas , Simbiosis , Animales , Densidad de Población
17.
Ecol Lett ; 18(4): 385-400, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25735791

RESUMEN

The strength of species interactions influences strongly the structure and dynamics of ecological systems. Thus, quantifying such strength is crucial to understand how species interactions shape communities and ecosystems. Although the concepts and measurement of interaction strength in food webs have received much attention, there has been comparatively little progress in the context of mutualism. We propose a conceptual scheme for studying the strength of plant-animal mutualistic interactions. We first review the interaction strength concepts developed for food webs, and explore how these concepts have been applied to mutualistic interactions. We then outline and explain a conceptual framework for defining ecological effects in plant-animal mutualisms. We give recommendations for measuring interaction strength from data collected in field studies based on a proposed approach for the assessment of interaction strength in plant-animal mutualisms. This approach is conceptually integrative and methodologically feasible, as it focuses on two key variables usually measured in field studies: the frequency of interactions and the fitness components influenced by the interactions.


Asunto(s)
Cadena Alimentaria , Modelos Biológicos , Simbiosis , Animales , Ecología/métodos , Modelos Logísticos , Plantas , Dinámica Poblacional
19.
Ecology ; 93(4): 719-25, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22690622

RESUMEN

Recent studies of plant-animal mutualistic networks have assumed that interaction frequency between mutualists predicts species impacts (population-level effects), and that field estimates of interaction strength (per-interaction effects) are unnecessary. Although existing evidence supports this assumption for the effect of animals on plants, no studies have evaluated it for the reciprocal effect of plants on animals. We evaluate this assumption using data on the reproductive effects of pollinators on plants and the reciprocal reproductive effects of plants on pollinators. The magnitude of species impacts of plants on pollinators, the reciprocal impacts of pollinators on plants, and their asymmetry were well predicted by interaction frequency. However, interaction strength was a key determinant of the sign of species impacts. These results underscore the importance of quantifying interaction strength in studies of mutualistic networks. We also show that the distributions of interaction strengths and species impacts are highly skewed, with few strong and many weak interactions. This skewed distribution matches the pattern observed in food webs, suggesting that the community-wide organization of species interactions is fundamentally similar between mutualistic and antagonistic interactions. Our results have profound ecological implications, given the key role of interaction strength for community stability.


Asunto(s)
Insectos/fisiología , Plantas/clasificación , Polinización/fisiología , Animales , Especificidad de la Especie
20.
J Anim Ecol ; 81(1): 190-200, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21815890

RESUMEN

1. The study of plant-pollinator interactions in a network context is receiving increasing attention. This approach has helped to identify several emerging network patterns such as nestedness and modularity. However, most studies are based only on qualitative information, and some ecosystems, such as deserts and tropical forests, are underrepresented in these data sets. 2. We present an exhaustive analysis of the structure of a 4-year plant-pollinator network from the Monte desert in Argentina using qualitative and quantitative tools. We describe the structure of this network and evaluate sampling completeness using asymptotic species richness estimators. Our goal is to assess the extent to which the realized sampling effort allows for an accurate description of species interactions and to estimate the minimum number of additional censuses required to detect 90% of the interactions. We evaluated completeness of detection of the community-wide pollinator fauna, of the pollinator fauna associated with each plant species and of the plant-pollinator interactions. We also evaluated whether sampling completeness was influenced by plant characteristics, such as flower abundance, flower life span, number of interspecific links (degree) and selectiveness in the identity of their flower visitors, as well as sampling effort. 3. We found that this desert plant-pollinator network has a nested structure and that it exhibits modularity and high network-level generalization. 4. In spite of our high sampling effort, and although we sampled 80% of the pollinator fauna, we recorded only 55% of the interactions. Furthermore, although a 64% increase in sampling effort would suffice to detect 90% of the pollinator species, a fivefold increase in sampling effort would be necessary to detect 90% of the interactions. 5. Detection of interactions was incomplete for most plant species, particularly specialists with a long flowering season and high flower abundance, or generalists with short flowering span and scant flowers. Our results suggest that sampling of a network with the same effort for all plant species is inadequate to sample interactions. 6. Sampling the diversity of interactions is labour intensive, and most plant-pollinator networks published to date are likely to be undersampled. Our analysis allowed estimating the completeness of our sampling, the additional effort needed to detect most interactions and the plant traits that influence the detection of their interactions.


Asunto(s)
Biota , Insectos/fisiología , Fenómenos Fisiológicos de las Plantas , Polinización , Animales , Argentina , Clima Desértico , Flores/fisiología , Modelos Biológicos , Densidad de Población , Estaciones del Año , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA