Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1374937, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135648

RESUMEN

To study plant organs, it is necessary to investigate the three-dimensional (3D) structures of plants. In recent years, non-destructive measurements through computed tomography (CT) have been used to understand the 3D structures of plants. In this study, we use the Chrysanthemum seticuspe capitulum inflorescence as an example and focus on contact points between the receptacles and florets within the 3D capitulum inflorescence bud structure to investigate the 3D arrangement of the florets on the receptacle. To determine the 3D order of the contact points, we constructed slice images from the CT volume data and detected the receptacles and florets in the image. However, because each CT sample comprises hundreds of slice images to be processed and each C. seticuspe capitulum inflorescence comprises several florets, manually detecting the receptacles and florets is labor-intensive. Therefore, we propose an automatic contact point detection method based on CT slice images using image recognition techniques. The proposed method improves the accuracy of contact point detection using prior knowledge that contact points exist only around the receptacle. In addition, the integration of the detection results enables the estimation of the 3D position of the contact points. According to the experimental results, we confirmed that the proposed method can detect contacts on slice images with high accuracy and estimate their 3D positions through clustering. Additionally, the sample-independent experiments showed that the proposed method achieved the same detection accuracy as sample-dependent experiments.

2.
Front Plant Sci ; 15: 1389902, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39077510

RESUMEN

Manual segmentation of the petals of flower computed tomography (CT) images is time-consuming and labor-intensive because the flower has many petals. In this study, we aim to obtain a three-dimensional (3D) structure of Camellia japonica flowers and propose a petal segmentation method using computer vision techniques. Petal segmentation on the slice images fails by simply applying the segmentation methods because the shape of the petals in CT images differs from that of the objects targeted by the latest instance segmentation methods. To overcome these challenges, we crop two-dimensional (2D) long rectangles from each slice image and apply the segmentation method to segment the petals on the images. Thanks to cropping, it is easier to segment the shape of the petals in the cropped images using the segmentation methods. We can also use the latest segmentation method for the task because the number of images used for training is augmented by cropping. Subsequently, the results are integrated into 3D to obtain 3D segmentation volume data. The experimental results show that the proposed method can segment petals on slice images with higher accuracy than the method without cropping. The 3D segmentation results were also obtained and visualized successfully.

3.
Front Plant Sci ; 15: 1334362, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638358

RESUMEN

Flowers exhibit morphological diversity in the number and positional arrangement of their floral organs, such as petals. The petal arrangements of blooming flowers are represented by the overlap position relation between neighboring petals, an indicator of the floral developmental process; however, only specialists are capable of the petal arrangement identification. Therefore, we propose a method to support the estimation of the arrangement of the perianth organs, including petals and tepals, using image recognition techniques. The problem for realizing the method is that it is not possible to prepare a large number of image datasets: we cannot apply the latest machine learning based image processing methods, which require a large number of images. Therefore, we describe the tepal arrangement as a sequence of interior-exterior patterns of tepal overlap in the image, and estimate the tepal arrangement by matching the pattern with the known patterns. We also use methods that require less or no training data to implement the method: the fine-tuned YOLO v5 model for flower detection, GrubCut for flower segmentation, the Harris corner detector for tepal overlap detection, MAML-based interior-exterior estimation, and circular permutation matching for tepal arrangement estimation. Experimental results showed good accuracy when flower detection, segmentation, overlap location estimation, interior-exterior estimation, and circle permutation matching-based tepal arrangement estimation were evaluated independently. However, the accuracy decreased when they were integrated. Therefore, we developed a user interface for manual correction of the position of overlap estimation and interior-exterior pattern estimation, which ensures the quality of tepal arrangement estimation.

4.
Front Plant Sci ; 13: 881382, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35592584

RESUMEN

Arbuscular mycorrhizal fungi (AMF) infect plant roots and are hypothesized to improve plant growth. Recently, AMF is now available for axenic culture. Therefore, AMF is expected to be used as a microbial fertilizer. To evaluate the usefulness of AMF as a microbial fertilizer, we need to investigate the relationship between the degree of root colonization of AMF and plant growth. The method popularly used for calculation of the degree of root colonization, termed the magnified intersections method, is performed manually and is too labor-intensive to enable an extensive survey to be undertaken. Therefore, we automated the magnified intersections method by developing an application named "Tool for Analyzing root images to calculate the Infection rate of arbuscular Mycorrhizal fungi: TAIM." TAIM is a web-based application that calculates the degree of AMF colonization from images using automated computer vision and pattern recognition techniques. Experimental results showed that TAIM correctly detected sampling areas for calculation of the degree of infection and classified the sampling areas with 87.4% accuracy. TAIM is publicly accessible at http://taim.imlab.jp/.

5.
Front Plant Sci ; 13: 1016507, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714728

RESUMEN

This paper describes a method based on a deep neural network (DNN) for estimating the number of tillers on a plant. A tiller is a branch on a grass plant, and the number of tillers is one of the most important determinants of yield. Traditionally, the tiller number is usually counted by hand, and so an automated approach is necessary for high-throughput phenotyping. Conventional methods use heuristic features to estimate the tiller number. Based on the successful application of DNNs in the field of computer vision, the use of DNN-based features instead of heuristic features is expected to improve the estimation accuracy. However, as DNNs generally require large volumes of data for training, it is difficult to apply them to estimation problems for which large training datasets are unavailable. In this paper, we use two strategies to overcome the problem of insufficient training data: the use of a pretrained DNN model and the use of pretext tasks for learning the feature representation. We extract features using the resulting DNNs and estimate the tiller numbers through a regression technique. We conducted experiments using side-view whole plant images taken with plan backgroud. The experimental results show that the proposed methods using a pretrained model and specific pretext tasks achieve better performance than the conventional method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA