Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(44): 18157-18171, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37871434

RESUMEN

Copper(I) halides are well-known for their structural diversity and rich photoluminescence properties, showing great potential for the development of solid-state lighting technology. A series of four molecular copper iodide clusters based on the [Cu4I4] cubane geometry is reported. Among them, [Cu8I8] octanuclear clusters of rare geometry resulting from dimerization of the tetranuclear counterparts were also synthesized. Two different phosphine ligands were studied, bearing either a styrene or an ethyl group. Therefore, the effect of the dimerization and of the ligand nature on the photophysical properties of the resulting clusters is investigated. The structural differences were analyzed by single-crystal X-ray diffraction (SCXRD), solid-state nuclear magnetic resonance (NMR), infrared, and Raman analyses. Compared to the ethyl group, the styrene function appears to greatly impact the photophysical properties of the clusters. The luminescence thermochromic properties of the ethyl derivatives and the intriguing photophysical properties of the clusters with styrene function were rationalized by density functional theory (DFT) calculations. Thus, the styrene group significantly lowers in energy the vacant orbitals and consequently affects the global energetic layout of the clusters. From this study, it was found that the nuclearity of copper iodide clusters eventually has less influence on the photophysical properties than the nature of the ligand. The design of proper ligands should therefore be considered when developing materials for specific lighting applications.

2.
Inorg Chem ; 61(9): 4080-4091, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35199996

RESUMEN

Copper(I) halides are currently the subject of intensive research because of their rich photophysical properties combined with economic and eco-friendly advantages for practical applications. The molecular copper iodide cluster of the general formula [Cu4I4L4] (L = ligand) is a well-known photoluminescent compound, and the possibility to enlarge the panel of its photophysical properties is studied here, by exploring ligands bearing a distinct emitter. The comparative study of five copper iodide clusters coordinated by different phosphine ligands functionalized by the emissive cyanobiphenyl (CBP) group is thus described in this work. The emissive properties of the ligands have a great impact onto the photophysical properties of the cluster. Compared with classical [Cu4I4L4] copper iodide clusters, the origin of the emission bands is largely modified. The CBP moiety of electron acceptor character significantly lowers in energy the vacant orbitals and consequently affects the global energetic layout. These clusters present dual emission based on two different emissive centers which interplay through energy transfer. This study demonstrates that the design of original ligands is an effective approach to enrich the photophysical properties of the appealing family of copper halide complexes.

3.
Inorg Chem ; 59(18): 13607-13620, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32909432

RESUMEN

In the field of stimuli-responsive luminescent materials, mechanochromic compounds exhibiting reversible emission color changes activated by mechanical stimulation present appealing perspectives in sensor applications. The mechanochromic luminescence properties of the molecular cubane copper iodide cluster [Cu4I4[PPh2(C6H4-CH2OH)]4] (1) are reported in this study. This compound can form upon melting an amorphous phase, giving an unprecedented opportunity to investigate the mechanochromism phenomenon. Because the mechanically induced crystalline-to-amorphous transition is only partial, the completely amorphous phase represents the ultimate state of the mechanically altered phase. Furthermore, the studied compound could form two different crystalline polymorphs, namely, [Cu4I4[PPh2(C6H4-CH2OH)]4]·C2H3N (1·CH3CN) and [Cu4I4[PPh2(C6H4-CH2OH)]4]·3C4H8O (1·THF), allowing the establishment of straightforward structure-property relationships. Photophysical and structural characterizations of 1 in different states were performed, and the experimental data were supported by theoretical investigations. Solid-state NMR analysis permitted quantification of the amorphous part in the mechanically altered phase. IR and Raman analysis enabled identification of the spectroscopic signatures of each state. Density functional theory calculations led to assignment of both the NMR characteristics and the vibrational bands. Rationalization of the photoluminescence properties was also conducted, with simulation of the phosphorescence spectra allowing an accurate interpretation of the thermochromic luminescence properties of this family of compounds. The combined study of crystalline polymorphism and the amorphous state allowed us to get deeper into the mechanochromism mechanism that implies changes of the [Cu4I4] cluster core geometry. Through the combination of multistimuli-responsive properties, copper iodide clusters constitute an appealing class of compounds toward original functional materials.

4.
Chem Asian J ; 14(18): 3166-3172, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31461221

RESUMEN

The aggregation-induced emission (AIE) properties of two different copper iodide clusters have been studied. These two [Cu4 I4 L4 ] clusters differ by their coordinated phosphine ligand and the luminescent mechanochromic properties are only displayed by one of them. The two clusters are AIE-active luminophors that exhibit an intense emission in the visible region upon aggregation. The formed particles present luminescent thermochromism comparable to that of the bulk compounds. The observed AIE properties can be attributed to suppression of nonradiative relaxation of the excited states in a more rigid state, in relation to the large structural relaxation of the excited triplet state. The differences observed in the AIE properties of the two clusters can be related to the different ligands. A correlation between the luminescence mechanochromic properties and the AIE effect is not straightforward, but the formation of "soft" molecular solids is a common characteristic that can explain the photoactive properties of these compounds.

5.
Dalton Trans ; 48(22): 7899-7909, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31086883

RESUMEN

The development of luminescent mechanochromic materials depends mainly on the possibility to rationally design them with the desired properties. Molecular copper iodide clusters constitute an unprecedented family of compounds exhibiting great changes of their luminescence properties upon mechanical stress. From previous studies, the mechanochromic properties of cubane [Cu4I4L4] (L = organic ligand) clusters have been attributed to modifications of cuprophilic interactions induced by mechanical solicitation. In this study, we ascertain our hypothesis by choosing to study the luminescence mechanochromism of a [Cu4I4(PPh3)4] cluster which presents two crystalline polymorphs exhibiting strikingly different Cu-Cu bond lengths. As forecasted, only one of these two polymorphs exhibits mechanochromic properties. Structural and optical characterization methods are reported along with structural characterization under controlled pressure allowing a precise analysis of the structural changes occurring under mechanical stress. In addition to confirming our mechanism based on enhancement of cuprophilic interactions under pressure, this study demonstrates the possibility of prediction of mechanochromic properties in the family of copper iodide compounds that constitutes a step further toward the rational design of stimuli-responsive materials.

6.
Inorg Chem ; 57(8): 4328-4339, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29620359

RESUMEN

Luminescent materials based on copper complexes are currently receiving increasing attention because of their rich photophysical properties, opening a wide field of applications. The copper iodide clusters formulated [Cu4I4L4] (L = ligand), are particularly relevant for the development of multifunctional materials based on their luminescence stimuli-responsive properties. In this context, controlling and modulating their photophysical properties is crucial and this can only be achieved by thorough understanding of the origin of the optical properties. We thus report here, the comparative study of a series of cubane copper iodide clusters coordinated by different phosphine ligands, with the goal of analyzing the effect of the ligands nature on the photoluminescence properties. The synthesis, structural, and photophysical characterizations along with theoretical investigations of copper iodide clusters with ligands presenting different electronic properties, are described. A method to simplify the analysis of the 31P solid-state NMR spectra is also reported. While clusters with electron-donating groups present classical luminescence properties, the cluster bearing strong electron-withdrawing substituents exhibits original behavior demonstrating a clear influence of the ligands properties. In particular, the electron-withdrawing character induces a decrease in energy of the unoccupied molecular orbitals, that consequently impacts the emission properties. The modification of the luminescence thermochromic properties of the clusters are supported by density functional theory (DFT) calculations. This study demonstrates that the control of the luminescence properties of these compounds can be achieved through modification of the coordinated ligands, nevertheless the role of the crystal packing should not be underestimated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA