Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 136(26): 9443-52, 2014 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-24915305

RESUMEN

Achieving supramolecular polymerization based on strong yet reversible bonds represents a significant challenge. A solution may be offered by perfluoroalkyl groups, which have remarkable hydrophobicity. We tested the idea that a perfluorooctyl chain attached to a perylene diimide amphiphile can dramatically enhance the strength of supramolecular bonding in aqueous environments. Supramolecular structures and polymerization thermodynamics of this fluorinated compound (1-F) were studied in comparison to its non-fluorinated analogue (1-H). Depending on the amount of organic cosolvent, 1-F undergoes cooperative or isodesmic aggregation. The switching between two polymerization mechanisms results from a change in polymer structure, as observed by cryogenic electron microscopy. 1-F showed exceptionally strong noncovalent binding, with the largest directly measured association constant of 1.7 × 10(9) M(-1) in 75:25 water/THF mixture (v/v). In pure water, the association constant of 1-F is estimated to be at least in the order of 10(15) M(-1) (based on extrapolation), 3 orders of magnitude larger than that of 1-H. The difference in aggregation strength between 1-F and 1-H can be explained solely on the basis of the larger surface area of the fluorocarbon group, rather than a unique nature of fluorocarbon hydrophobicity. However, differences in aggregation mechanism and cooperativity exhibited by 1-F appear to result from specific fluorocarbon conformational rigidity.

2.
J Am Chem Soc ; 133(40): 16201-11, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21882828

RESUMEN

Self-assembly in aqueous medium is of primary importance and widely employs hydrophobic interactions. Yet, unlike directional hydrogen bonds, hydrophobic interactions lack directionality, making difficult rational self-assembly design. Directional hydrophobic motif would significantly enhance rational design in aqueous self-assembly, yet general approaches to such interactions are currently lacking. Here, we show that pairwise directional hydrophobic/π-stacking interactions can be designed using well-defined sterics and supramolecular multivalency. Our system utilizes a hexasubstituted benzene scaffold decorated with 3 (compound 1) or 6 (compound 2) amphiphilc perylene diimides. It imposes a pairwise self-assembly mode, leading to well-defined supramolecular polymers in aqueous medium. the assemblies were characterized using cryogenic electron microscopy, small-angle X-ray scattering, optical spectroscopy, and EPR. Supramolecular polymerization studies in the case of 2 revealed association constants in 10(8) M(-1) range, and significant enthalpic contribution to the polymerization free energy. The pairwise PDI motif enables exciton confinement and localized emission in the polymers based on 1 and 2's unique photonic behavior, untypical of the extended π-stacked systems. Directional pairwise hydrophobic interactions introduce a novel strategy for rational design of noncovalent assemblies in aqueous medium, and bring about a unique photofunction.


Asunto(s)
Benceno/química , Imidas/química , Perileno/análogos & derivados , Polímeros/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformación Molecular , Perileno/química , Agua/química
3.
J Am Chem Soc ; 130(45): 14966-7, 2008 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-18928256

RESUMEN

Self-assembling systems, whose structure and function can be reversibly controlled in situ are of primary importance for creating multifunctional supramolecular arrays and mimicking the complexity of natural systems. Herein we report on photofunctional fibers self-assembled from perylene diimide cromophores, in which interactions between aromatic monomers can be attenuated through their reduction to anionic species that causes fiber fission. Oxidation with air restores the fibers. The sequence represents reversible supramolecular depolymerization-polymerization in situ and is accompanied by a reversible switching of photofunction.


Asunto(s)
Imidas/química , Naftalenos/química , Perileno/análogos & derivados , Polietilenglicoles/química , Alquinos/química , Espectroscopía de Resonancia por Spin del Electrón , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Micelas , Perileno/química , Procesos Fotoquímicos , Dispersión del Ángulo Pequeño , Espectrofotometría Ultravioleta , Viscosidad , Difracción de Rayos X
4.
J Phys Chem B ; 112(30): 8855-8, 2008 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-18597517

RESUMEN

Perylene diimide (PDI) bearing polyethylene glycol substituents at the imide positions was reduced in water with sodium dithionite to produce an aromatic dianion. The latter is stable for months in deoxygenated aqueous solutions, in contrast to all known aromatic dianions which readily react with water. Such stability is due to extensive electron delocalization and the aromatic character of the dianion, as evidenced by spectroscopic and theoretical studies. The dianion reacts with oxygen to restore the parent neutral compound, which can be reduced again in an inert atmosphere with sodium dithionite to give the dianion. Such reversible charging renders PDIs useful for controlled electron storage and release in aqueous media. Simple preparation of the dianion, reversible charging, high photoredox power, and stability in water can lead to development of new photofunctional and electron transfer systems in the aqueous phase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA