Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Fish Dis ; 47(1): e13862, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37776076

RESUMEN

Piscirickettsiosis is the most prevalent bacterial disease affecting seawater salmon in Chilean salmon industry. Antibiotic therapy is the first alternative to counteract infections caused by Piscirickettsia salmonis. The presence of bacterial biofilms on materials commonly used in salmon farming may be critical for understanding the bacterial persistence in the environment. In the present study, the CDC Biofilm Reactor® was used to investigate the effect of sub- and over-MIC of florfenicol on both the pre-formed biofilm and the biofilm formation by P. salmonis under the antibiotic stimuli on Nylon and high-density polyethylene (HDPE) surfaces. This study demonstrated that FLO, at sub- and over-MIC doses, decreases biofilm-embedded live bacteria in the P. salmonis isolates evaluated. However, it was shown that in the P. salmonis Ps007 strain the presence of sub-MIC of FLO reduced its biofilm formation on HDPE surfaces; however, biofilm persists on Nylon surfaces. These results demonstrated that P. salmonis isolates behave differently against FLO and also, depending on the surface materials. Therefore, it remains a challenge to find an effective strategy to control the biofilm formation of P. salmonis, and certainly other marine pathogens that affect the sustainability of the Chilean salmon industry.


Asunto(s)
Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Salmonidae , Animales , Polietileno/farmacología , Nylons/farmacología , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Antibacterianos/farmacología , Salmón , Biopelículas , Infecciones por Piscirickettsiaceae/veterinaria , Infecciones por Piscirickettsiaceae/microbiología
2.
J Fish Dis ; 46(1): 1-15, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36130050

RESUMEN

This study evaluated the probiotic potential of the biofilm formed by the strain Pseudomonas sp. RGM2144 on rainbow trout survival. When challenged with the fish pathogen Flavobacterium psychrophilum, Pseudomonas sp. RGM2144 increased rainbow trout survival to 92.7 ± 1.2% (control: 35.3 ± 9.5%, p < .0001). The draft genome of Pseudomonas sp. RGM2144 is 6.8 Mbp long, with a completeness 100% and a contamination of 0.4%. The genome contains 6122 protein-coding genes of which 3564 (~60%) have known functions. The genome and phylogeny indicate that Pseudomonas sp. RGM2144 is a new species in the Pseudomonas genus, with few virulence factors, plasmids, and genes associated with antimicrobial resistance, suggesting a non-pathogenic bacterium with protective potential. In addition, the genome encodes for 11 secondary metabolite biosynthetic gene clusters that could be involved in the inhibition of F. psychrophilum. We suggest that Pseudomonas sp. RGM2144 may be applied as a probiotic in salmonid fish farming.


Asunto(s)
Enfermedades de los Peces , Oncorhynchus mykiss , Animales , Pseudomonas/genética , Genómica
3.
J Fish Dis ; 45(8): 1099-1107, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35543448

RESUMEN

Research into Piscirickettsia salmonis biofilms on materials commonly used in salmon farming is crucial for understanding its persistence and virulence. We used the CDC Biofilm Reactor to investigate P. salmonis (LF-89 and EM-90) biofilm formation on Nylon, Stainless steel (316L), Polycarbonate and High-Density Polyethylene (HDPE) surfaces. After 144 h of biofilm visualization by scanning confocal laser microscopy under batch growth conditions, Nylon coupons generated the greatest biofilm formation and coverage compared to Stainless steel (316L), Polycarbonate and HDPE. Additionally, P. salmonis biofilm formation on Nylon was significantly greater (p ≤ .01) than Stainless steel (316L), Polycarbonate and HDPE at 288 h. We used Nylon coupons to determine the kinetic parameters of the planktonic and biofilm phases of P. salmonis. The two strains had similar latencies in the planktonic phase; however, LF-89 maximum growth was 2.5 orders of magnitude higher (Log cell ml-1 ). Additionally, LF-89 had a specified growth rate (µmax) of 0.0177 ± 0.006 h-1 and a generation time of 39.2 h. This study contributes to a deeper understanding of the biofilm formation by P. salmonis and elucidates the impact of the biofilm on aquaculture systems.


Asunto(s)
Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Animales , Biopelículas , Centers for Disease Control and Prevention, U.S. , Enfermedades de los Peces/microbiología , Nylons , Infecciones por Piscirickettsiaceae/microbiología , Polietileno , Acero Inoxidable , Estados Unidos
4.
Environ Sci Pollut Res Int ; 29(6): 7997-8011, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34825330

RESUMEN

Microplastics (MPs) correspond to plastics between 0.1 µm and 5 mm in diameter, and these can be intentionally manufactured to be microscopic or generated from the fragmentation of larger plastics. Currently, MP contamination is a complicated subject due to its accumulation in the environment. They are a novel surface and a source of nutrients in soils because MPs can serve as a substrate for the colonization of microorganisms. Its presence in soil triggers physical (stability of aggregates, soil bulk density, and water dynamics), chemical (nutrients availability, organic matter, and pH), and biological changes (microbial activity and soil fauna). All these changes alter organic matter degradation and biogeochemical cycles such as the nitrogen (N) cycle, which is a key predictor of ecological stability and management in the terrestrial ecosystem. This review aims to explore how MPs affect the N cycle in the soil, the techniques to detect it in soil, and their effects on the physicochemical and biological parameters, emphasizing the impact on the main bacterial groups, genes, and enzymes associated with the different stages of the N cycle.


Asunto(s)
Microplásticos , Suelo , Ecosistema , Ciclo del Nitrógeno , Plásticos
5.
BMC Microbiol ; 21(1): 335, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876006

RESUMEN

BACKGROUND: The native potatoes (Solanum tuberosum subsp. tuberosum L.) grown in Chile (Chiloé) represent a new, unexplored source of endophytes to find potential biological control agents for the prevention of bacterial diseases, like blackleg and soft rot, in potato crops. RESULT: The objective of this study was the selection of endophytic actinobacteria from native potatoes for antagonistic activity against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum, and their potential to suppress tissue maceration symptoms in potato tubers. This potential was determined through the quorum quenching activity using a Chromobacterium violaceaum ATCC 12472 Wild type (WT) bioassay and its colonization behavior of the potato plant root system (S. tuberosum) by means of the Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) targeting technique. The results showed that although Streptomyces sp. TP199 and Streptomyces sp. A2R31 were able to inhibit the growth of the pathogens, only the Streptomyces sp. TP199 isolate inhibited Pectobacterium sp. growth and diminished tissue maceration in tubers (p ≤ 0.05). Streptomyces sp. TP199 had metal-dependent acyl homoserine lactones (AHL) quorum quenching activity in vitro and was able to colonize the root endosphere 10 days after inoculation. CONCLUSIONS: We concluded that native potatoes from southern Chile possess endophyte actinobacteria that are potential agents for the disease management of soft rot and blackleg.


Asunto(s)
Actinobacteria/fisiología , Antibiosis/fisiología , Endófitos/fisiología , Solanum tuberosum/microbiología , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Agentes de Control Biológico/aislamiento & purificación , Chile , Endófitos/clasificación , Endófitos/genética , Endófitos/aislamiento & purificación , Pectobacterium/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Tubérculos de la Planta/microbiología , Percepción de Quorum , Streptomyces/clasificación , Streptomyces/genética , Streptomyces/aislamiento & purificación , Streptomyces/fisiología
6.
Front Cell Infect Microbiol ; 11: 755496, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34760722

RESUMEN

Piscirickettsia salmonis is the etiological agent of piscirickettsiosis, the most prevalent disease in salmonid species in Chilean salmonids farms. Many bacteria produce N-acyl-homoserine lactones (AHLs) as a quorum-sensing signal molecule to regulate gene expression in a cell density-dependent manner, and thus modulate physiological characteristics and several bacterial mechanisms. In this study, a fluorescent biosensor system method and gas chromatography-tandem mass spectrometry (GC/MS) were combined to detect AHLs produced by P. salmonis. These analyses revealed an emitted fluorescence signal when the biosensor P. putida EL106 (RPL4cep) was co-cultured with both, P. salmonis LF-89 type strain and an EM-90-like strain Ps007, respectively. Furthermore, the production of an AHL-type molecule was confirmed by GC/MS by both P. salmonis strains, which identified the presence of a N-acetyl-L-homoserine Lactone in the supernatant extract. However, It is suggested that an alternate pathway could synthesizes AHLs, which should be address in future experiments in order to elucidate this important bacterial process. To the best of our knowledge, the present report is the first to describe the type of AHLs produced by P. salmonis.


Asunto(s)
4-Butirolactona , Percepción de Quorum , 4-Butirolactona/análogos & derivados , Acil-Butirolactonas , Bacterias , Cromatografía de Gases y Espectrometría de Masas , Piscirickettsia
7.
Electron. j. biotechnol ; Electron. j. biotechnol;33: 63-67, May. 2018. ilus, graf, tab
Artículo en Inglés | LILACS | ID: biblio-1024839

RESUMEN

Background: Trimethylamine (TMA) is the main responsible for the odor associated with rotting fish and other annoying odors generated in many industrial activities. Biofiltration has proved to be efficient for treating odorous gaseous emissions. The main objective of this work was to determine the removal capacity of TMA of a biotrickling filter inoculated with Aminobacter aminovorans and to evaluate the effect of H2S on its performance. Results: The maximumspecific growth rate ofA. aminovorans in a liquid culture was 0.15 h -1 , witha TMAto biomass yield of 0.10 (g g -1) and a specific consumption rate of 0.062 g·g-1·h-1 . The initial specific consumption rate of TMA was highly influenced by the presence of H2S in liquid culture at concentrations of 20 and 69 ppm in heading space oftheflasks.ABTF inoculatedwithA. aminovorans showedremoval efficiencieshigher than98%ina range ofloading rate of 0.2 to 8 g·m-3·h-1 at empty bed residence time (EBRT) of 85 and 180 s. No effect on the elimination capacity and efficiency was detected when H2S was added at 20 and 50 ppm to the inlet gaseous emission, though the fraction of A. aminovorans measured by qPCR in the biofilm decreased. Conclusions:Abiotrickling filter inoculated with A. aminovorans can remove efficiently the TMA in a gaseous stream. The elimination capacity of TMA can be negatively affected by H2S, but its effect is not notorious when it is forming part of a biofilm, due to its high specific consumption rate of TMA.


Asunto(s)
Alphaproteobacteria/metabolismo , Sulfuro de Hidrógeno , Metilaminas/metabolismo , Desodorización/métodos , Reactores Biológicos , Filtración , Peces
8.
Electron. j. biotechnol ; Electron. j. biotechnol;25: 58-63, ene. 2017. tab, graf, ilus
Artículo en Inglés | LILACS | ID: biblio-1008708

RESUMEN

Background: Sulphur-oxidizing microorganisms are widely used in the biofiltration of total reduced sulphur compounds (odorous and neurotoxic) produced by industries such as the cellulose and petrochemical industries, which include high-temperature process steps. Some hyperthermophilic microorganisms have the capability to oxidize these compounds at high temperatures (N60°C), and archaea of this group, for example, Sulfolobus metallicus, are commonly used in biofiltration technology. Results: In this study, a hyperthermophilic sulphur-oxidizing strain of archaea was isolated from a hot spring (Chillán, Chile) and designated as M1. It was identified as archaea of the genus Sulfolobus (99% homology with S. solfataricus 16S rDNA). Biofilms of this culture grown on polyethylene rings showed an elemental sulphur oxidation rate of 95.15 ± 15.39 mg S l-1 d-1, higher than the rate exhibited by the biofilm of the sulphur-oxidizing archaea S. metallicus (56.8 ± 10.91 mg l-1 d-1). Conclusions: The results suggest that the culture M1 is useful for the biofiltration of total reduced sulphur gases at high temperatures and for other biotechnological applications.


Asunto(s)
Sulfuros/metabolismo , Archaea/metabolismo , Biopelículas , Oxidación-Reducción , Filogenia , Reacción en Cadena de la Polimerasa , Sulfolobus , Archaea/aislamiento & purificación , Archaea/genética , Polietileno , Manantiales de Aguas Termales/microbiología , Electroforesis , Filtración , Extremófilos , Calor
9.
J Aquat Anim Health ; 27(2): 112-22, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26000731

RESUMEN

The main goal of this study was to find bacterial isolates with the ability to inhibit the growth of the fish pathogens Aeromonas hydrophila, Vibrio anguillarum, and Flavobacterium psychrophilum and to inhibit the blockage of the quorum-sensing (QS) system. A total of 80 gram-negative strains isolated from various freshwater Chilean salmonid farms were studied. We determined that 10 strains belonging to the genus Pseudomonas inhibited at least one of the assayed fish pathogens. Of these, nine strains were able to produce siderophores and two strains were able to inhibit the growth of all assayed pathogenic species. When the 80 strains were examined for QS-blocking activity, only the strains Pseudomonas sp. FF16 and Raoultella planticola R5B1 were identified as QS blockers. When the QS-blocker strains were analyzed for their ability to produce homoserine lactone (HSL) molecules, thin-layer chromatography analysis showed that both strains were able to produce C6-HSL- and C8-HSL-type molecules. Strain R5B1 did not show growth inhibition properties, but strain FF16 also led to inhibition of growth in A. hydrophila and F. psychrophilum as well as to siderophore production. Pseudomonas sp. FF16 exhibited potentially useful antagonistic properties and could be a probiotic candidate for the salmon farming industry.


Asunto(s)
Bacterias/crecimiento & desarrollo , Enfermedades de los Peces/microbiología , Percepción de Quorum/fisiología , Salmonidae/microbiología , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Enfermedades de los Peces/prevención & control
10.
Magnes Res ; 27(2): 57-68, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25252874

RESUMEN

Magnesium is an element essential for life and is found ubiquitously in all organisms. The different cations play important roles as enzymatic co-factors, as signaling molecules, and in stabilizing cellular components. It is not surprising that magnesium salts in microbiological experiments are typically associated with positive effects. In this study with Listeria monocytogenes as a model organism, we focus however on the usefulness of magnesium (in form of MgCl2) as a stress enhancer. Whereas MgCl2 does not affect bacterial viability at near-neutral pHs, it was found to strongly compromise culturability and redox activity when cell suspensions were exposed to the salt at acidic pH. The principle was confirmed with a number of gram-negative and gram-positive species. The magnesium salt dramatically increased the acidity to a level that was antimicrobial in the presence of anionic bases such as phosphate, lactate, or acetate, but not TRIS. The antimicrobial activity of MgCl2 was much stronger than that of NaCl, KCl, or CaCl2. No effect was observed with MgSO4 or when cells were exposed to MgCl2 in phosphate buffer with a pH ≥ 5. Acid stress was reinforced by an additional, salt-specific effect of MgCl2 on microbial viability that needs further examination. Apart from its implications for surface disinfection, this observation might support the commonly stated therapeutic properties of MgCl2 for the treatment of skin diseases (with healthy skin being an acidic environment), and could contribute to understanding why salt from the Dead Sea, where Mg(2+) and Cl(-) are the most abundant cation/anion, has healing properties in a microbiological context.


Asunto(s)
Antiinfecciosos/farmacología , Listeria monocytogenes/efectos de los fármacos , Cloruro de Magnesio/farmacología , Aniones , Antiinfecciosos/química , Relación Dosis-Respuesta a Droga , Humanos , Concentración de Iones de Hidrógeno , Listeria monocytogenes/fisiología , Cloruro de Magnesio/química , Oxidación-Reducción/efectos de los fármacos
11.
Springerplus ; 2(1): 176, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23667820

RESUMEN

The most important bacterial pathology currently occurring in Chilean freshwater salmon farming is the cold-water disease produced by the psychrotrophic bacteria Flavobacterium psychrophilum. The main aim of this study was to characterize the inhibitory activity of an antagonist strain on the formation of biofilms of a F. psychrophilum strain. The antagonistic strain Pseudomonas fluorescens FF48 was isolated from the sediment beneath the salmon cages of a freshwater Chilean salmon farm and was identified by using the 16S rRNA gene sequence analysis. The production of siderophores, mainly during the stationary phase of growth of the antagonist strain was demonstrated using the Chrome Azurol S method and through F. psychrophilum inhibition under iron saturation conditions. Subsequently, the effect of the antagonist supernatant on the formation of F. psychrophilum biofilm was tested using the crystal violet staining method observing an inhibition of the growth of F. psychrophilum, but no effect was observed when iron saturation concentrations were used. Furthermore, when the antagonist strain was previously deposited on the support, it completely inhibited the formation of F. psychrophilum biofilms, but when both bacteria were inoculated simultaneously no inhibitory effect was detected. In conclusion, it was demonstrated that FF48 strain is able to inhibit the formation of F. psychrophilum biofilms in vitro probably mediated by the siderophore production, suggesting its potential use as a biocontrol biofilm in freshwater fish rearing systems to prevent the persistence of biofilms of the fish pathogenic species F. psychrophilum.

12.
Nat Prod Commun ; 8(2): 147-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23513712

RESUMEN

Quorum sensing (QS) is a regulatory mechanism that enables bacteria to make collective decisions such as an increase in virulence factors and biofilm production. Inhibitors of QS are important research tools in the discovery of new potential anti-bacterial agents. Polygodial, drimenol and drimendiol are drimane sesquiterpenoids isolated from Drimys winteri, a Chilean native tree. Their QS activity, when tested on Chromobacterium violaceum ATCC 12472, showed that drimendiol is an inhibitor of QS, decreasing violaceine production in C violaceum and decreasing biofilm formation of Pseudomonas syringae strains. Consequently it increased the biocide effects of CuSO4 on biofilms of P. syringae.


Asunto(s)
Percepción de Quorum/efectos de los fármacos , Sesquiterpenos/farmacología , Biopelículas/efectos de los fármacos , Sesquiterpenos Policíclicos , Pseudomonas/efectos de los fármacos , Relación Estructura-Actividad
13.
Water Res ; 46(10): 3283-92, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22516175

RESUMEN

This study investigated chlorate reduction kinetics in multiple samples of sediments from a longitudinal profile of a wetland located downstream of the effluent discharge of a cellulose plant, including characterisation of the bacterial communities involved. The sediments were exposed to different initial chlorate concentrations in microcosm tests, with and without the addition of acetate as an external electron donor, and in a matrix of natural water or a defined medium. At a high initial chlorate concentration of 100 mg/L, in the absence of an external electron source, the degradation curves presented first-order kinetics, influenced by electron donor availability. The first-order kinetic constant varied between 0.05 and 0.17 day(-1). Subsequently, when the initial chlorate concentration was reduced to 7 mg/L, a zero-order kinetic was obtained, with the kinetic constant presenting values between 1.1 and 1.3 mg/L-day. No correlation was observed between chlorate degradation kinetics and the location of the sampling points or the previous history of exposure to chlorate. Other factors evaluated, such as the availability of organic matter or the chlorate reducing bacteria count, also proved not to have any incidence on the results. The richness of chlorate reducing bacteria species in the different samples analysed were also similar, with the greatest similarity being found between cld genes in the samples from the upstream or downstream sampling points. Additionally, cld genes most similar to those present in PCRB like Dechlorospirillum sp., Alicycliphilus denitrificans, Dechloromonas agitata, Dechloromonas sp. LT1 and Ideonella dechloratans were detected. This study showed that the anaerobic sediments of the Cruces river wetland present a high potential for chlorate natural attenuation, regardless of the previous history of exposure to chlorate. This capacity is associated with the presence of a diverse community of chlorate reducing bacteria.


Asunto(s)
Bacterias/metabolismo , Cloratos/metabolismo , Sedimentos Geológicos/microbiología , Ríos/microbiología , Humedales , Bacterias/genética , Biodegradación Ambiental , Chile , ADN Ribosómico/genética , Electroforesis en Gel de Gradiente Desnaturalizante , Genes Bacterianos/genética , Geografía , Cinética , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Percloratos/metabolismo
14.
J Microbiol Methods ; 87(1): 89-95, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21821068

RESUMEN

Treatment of microbiological samples with viability dyes prior to extraction of DNA and PCR amplification for downstream analysis has evolved into a commonly applied method. The addition of this easy-to-perform step to the sample analysis procedure inhibits the amplification of DNA from dead cells with compromised cell membranes. The method is currently used both in combination with quantitative PCR (qPCR), end-point PCR, and isothermal amplification. We present here a detailed study of the effect of amplicon size on amplification signals from unstressed and heat-exposed cells after treatment with propidium monoazide (PMA). PMA treatment was shown to be more efficient in excluding dead cells from the analysis both in combination with qPCR (PMA-qPCR) and denaturing gradient gel electrophoresis (PMA-DGGE), when longer amplicons were used. When applied to pure cultures of the fish pathogens Vibrio anguillarum and Flavobacterium psychrophilum exposed to a heat gradient ranging from mild to lethal, qPCR product lengths did not influence PMA-qPCR results at low temperatures, whereas an increasingly strong impact was seen at higher temperatures. Membrane permeability as a result of heat exposure might however have to be considered a conservative parameter for cell death for these pathogens as culturability and redox activity were lost at lower stress intensities than membrane integrity. When applying PMA-DGGE to an environmental water sample which was either left untreated or was exposed to heat, differences to non-PMA treated samples tended to slightly increase when amplified fragments in the first round of the nested PCR were longer, whereas the impact of 1st-round cycle numbers remains unclear.


Asunto(s)
Azidas/química , Flavobacterium/química , Propidio/análogos & derivados , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Vibrio/química , Membrana Celular/metabolismo , ADN Bacteriano/química , ADN Bacteriano/aislamiento & purificación , Electroforesis en Gel de Gradiente Desnaturalizante , Flavobacterium/crecimiento & desarrollo , Calor , Viabilidad Microbiana , Oxidación-Reducción , Propidio/química , Estrés Fisiológico , Vibrio/crecimiento & desarrollo
15.
Electron. j. biotechnol ; Electron. j. biotechnol;14(1): 7-8, Jan. 2011. ilus, tab
Artículo en Inglés | LILACS | ID: lil-591925

RESUMEN

Sulphur Oxidizing Bacteria (SOB) is a group of microorganisms widely used for the biofiltration of Total Reduced Sulphur compounds (TRS). TRS are bad smelling compounds with neurotoxic activity which are produced by different industries (cellulose, petrochemical). Thiobacillus thioparus has the capability to oxidize organic TRS, and strains of this bacterium are commonly used for TRS biofiltration technology. In this study, two thiosulphate oxidizing strains were isolated from a petrochemical plant (ENAP BioBio, Chile). They were subjected to molecular analysis by real time PCR using specific primers for T. thioparus. rDNA16S were sequenced using universal primers and their corresponding thiosulphate activities were compared with the reference strain T. thioparus ATCC 10801 in batch standard conditions. Real time PCR and 16S rDNA sequencing showed that one of the isolated strains belonged to the Thiobacillus branch. This strain degrades thiosulphate with a similar activity profile to that shown by the ATCC 10801 strain, but with less growth, making it useful in biofiltration.


Asunto(s)
Animales , Halothiobacillus , Halothiobacillus/genética , Thiobacillus , Thiobacillus/enzimología , Thiobacillus/genética , Tiosulfatos/metabolismo , Tiosulfatos/química , Industria del Petróleo y Gas/métodos
16.
Electron. j. biotechnol ; Electron. j. biotechnol;13(5): 11-12, Sept. 2010. ilus, tab
Artículo en Inglés | LILACS | ID: lil-591893

RESUMEN

Reduced volatile sulphur compounds generate an impact on the environment, because of the bad smell and its low odour threshold. Compared with the existing physicochemical technologies for their elimination, biotrickling filters are an economically and environmentally sustainable alternative. Usually mixed cultures of microorganisms are used for inoculating biotrickling filters, in this case a pure culture of Thiobacillus thioparus is used for generating a biofilm, allowing to measure its capacity for the oxidation of four volatile reduced sulphur compounds: hydrogen sulphide, dimethyl sulphide, methyl mercaptan and dimethyl disulphide, using a residence time of 0.033 hrs. The viable cells of the biofilm were quantified by epifluorescence microscopy, staining the cells with ethidium bromide and acridine orange, polymerase chain reaction analysis in real time was used for testing the predominance of T. thiopharus in the biofilm. The microorganism was able to adhere and grow on the surface of rings made of polyethylene, with a viable population of 7•10(7) cell•ring-1, a 74 percent of total cells. The real time PCR showed a persistence of the population of T. thioparus for more than 300 days of operation, without being displaced by other microbial species. The maximum elimination capacities for each compound were 34.4; 21.8; 30.8 and 25.6 gS•m-3•h-1 for H2S, dimethylsulphide, dimethyldisulphide and methyl mercaptan, respectively. We conclude that it is possible to implement a biotrickling filter with the bacteria T. thioparus, which can oxidize volatile reduced sulphur compounds efficiently.


Asunto(s)
Filtración/métodos , Odorantes , Sulfuros/metabolismo , Thiobacillus/metabolismo , Biodegradación Ambiental , Biopelículas , Contaminación Ambiental , Microscopía Fluorescente , Oxidación-Reducción , Reacción en Cadena de la Polimerasa
17.
Electron. j. biotechnol ; Electron. j. biotechnol;10(4): 514-520, oct. 2007. ilus, graf
Artículo en Inglés | LILACS | ID: lil-504123

RESUMEN

Emissions of hydrogen sulfide (H2S) by industrial activities is frequent cause of corrosion and unpleasant odours. Treatment of gaseous emissions contaminated with H2S by biotrickling filters inoculated with single cultures of sulfur oxidizer bacteria exhibit several advantages over physicochemical methods, such as shorter adaptation times and higher removal ability. Biofilms of Thiobacillus thioparus and Acidithiobacillus thiooxidans have proved to exhibit high removal capacities, yet no comparative studies between them have been reported. This article reports the efficiency of biotrickling filters inoculated with T. thioparus and A. thiooxidans under similar conditions excepting the pH, that was the optimal for the bacterial growth, for the removal of H2S. The support was selected by determining the respirometric coefficients of the biomass. The maximum removal capacity of the biofilter inoculated with T. thioparus, operating within the range of pH (5.5-7.0) was 14 gS m-3 h-1, lower the value obtained for the biotrickling filter inoculated with A. thiooxidans; 370 gS m-3 h-1. Therefore, it is concluded that acid biotrickling filter inoculated with A. thiooxidans constitute the best strategy to remove H2S, with the advantage that the system not require an exhaustive pH control of the liquid media.


Asunto(s)
Acidithiobacillus thiooxidans/metabolismo , Biopelículas , Sulfuro de Hidrógeno/química , Thiobacillus/metabolismo , Biodegradación Ambiental , Biomasa , Contaminación Ambiental/prevención & control , Filtración , Concentración de Iones de Hidrógeno , Residuos Industriales , Oxidación-Reducción
18.
Appl Environ Microbiol ; 73(11): 3547-55, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17416686

RESUMEN

The composition of ammonia-oxidizing bacteria from the beta-Proteobacteria subclass (betaAOB) was studied in the surface and upper-oxycline oxic waters (2- to 50-m depth, approximately 200 to 44 microM O(2)) and within the oxygen minimum zone (OMZ) suboxic waters (50- to 400-m depth, < or =10 microM O(2)) of the eastern South Pacific off northern Chile. This study was carried out through cloning and sequencing of genes coding for 16S rRNA and the ammonia monooxygenase enzyme active subunit (amoA). Sequences affiliated with Nitrosospira-like cluster 1 dominated the 16S rRNA gene clone libraries constructed from both oxic and suboxic waters. Cluster 1 consists exclusively of yet-uncultivated betaAOB from marine environments. However, a single clone, out of 224 obtained from the OMZ, was found to belong to Nitrosospira lineage cluster 0. To our knowledge, cluster 0 sequences have been derived from betaAOB isolated only from sand, soil, and freshwater environments. Sequences in clone libraries of the amoA gene from the surface and upper oxycline could be grouped in a marine subcluster, also containing no cultured representatives. In contrast, all 74 amoA sequences originating from the OMZ were either closely affiliated with cultured Nitrosospira spp. from clusters 0 and 2 or with other yet-uncultured betaAOB from soil and an aerated-anoxic Orbal process waste treatment plant. Our results reveal the presence of Nitrosospira-like betaAOB in both oxic and suboxic waters associated with the OMZ but with a clear community shift at the functional level (amoA) along the strong oxygen gradient.


Asunto(s)
Amoníaco/metabolismo , Nitrosomonadaceae/clasificación , Nitrosomonadaceae/metabolismo , Agua de Mar/microbiología , Proteínas Bacterianas/genética , Chile , Clonación Molecular , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes de ARNr , Datos de Secuencia Molecular , Nitrosomonadaceae/genética , Nitrosomonadaceae/aislamiento & purificación , Oxidación-Reducción , Oxidorreductasas/genética , Oxígeno/metabolismo , Océano Pacífico , Filogenia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
19.
Anaerobe ; 10(1): 13-8, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16701495

RESUMEN

Ammonia is a metabolic product in the decomposition of protein wastes, and has a recognized inhibitory effect on methanogenesis; this effect has been slightly quantified on methanogenic biofilms and particularly those populated by methanogenic Archaea which produce ammonia as a catabolic product from methylated amines. This paper presents studies on the effect of ammonia on maximum methanogenic activity of anaerobic biofilms enriched by methylaminotrophic methane producing Archaea (mMPA). The effect of unionized free ammonia on the specific maximum methanogenic activity of a mMPA enriched biofilm was studied, using 250 mL flasks containing ceramic rings colonized by 30 day-old experimental biofilm and adding 48.8 (control system), 73.8, 98.8, 148.8, 248.8, 448.8 and 848.8 mg NH(3)-N/L. The systems were maintained for ten days at a pH of 7.5 and temperature of 37 degrees C. The results showed that at 848.8 mg NH(3)-N/L, biofilm methane production required 36 h adaptation period, prior to entering into maximum production phase. The highest maximum methanogenic activity reached a value of 2.337+/-0.213 g COD methane/g VSS *day when 48.8 mg NH(3)-N/L was added, and inhibition was clearly observed in those systems above 148.8 mg NH(3)-N/L, producing under 1.658+/-0.185 g COD methane/g VSS *day. The lowest methanogenic activity reached was 0.639+/-0.162 g COD methane/g VSS *day at the system added with 848.8 mg NH(3)-N/L. When applying the Luong and non-competitive inhibition models, the best fit was obtained with the non-competitive model, which predicted 50% inhibition of methanogenic activity at 365.288 mg NH(3)-N/L.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA