Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 10(1): 10153, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576870

RESUMEN

In this work, a novel technique to create positive-negative tunable liquid crystal lenses is proposed and experimentally demonstrated. This structure is based on two main elements, a transmission line acting as a voltage divider and concentric electrodes that distribute the voltage homogeneously across the active area. This proposal avoids all disadvantages of previous techniques, involving much simpler fabrication process (a single lithographic step) and voltage control (one or two sources). In addition, low voltage signals are required. Lenses with switchable positive and negative focal lengths and a simple, low voltage control are demonstrated. Moreover, by using this technique other optical devices could be engineered, e.g. axicons, Powell lenses, cylindrical lenses, Fresnel lenses, beam steerers, optical vortex generators, etc. For this reason, the proposed technique could open new venues of research in optical phase modulation based on liquid crystal materials.

3.
Opt Express ; 23(11): 13899-915, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072760

RESUMEN

A tunable aberration compensation device for rectangular micro-optical systems is proposed and demonstrated. This device, which is based in nematic liquid crystal and a micro-electrode structure, forms gradients in the index of refraction as a function of voltage. We have developed a fringe skeletonizing application in order to extract the 3D wavefront from an interference pattern. This software tool obtains the optical aberrations using Chebyshev polynomials. By using phase shifted electrical signals the aberrations can be controlled independently. A complete independent control over the spherical and coma aberration has been demonstrated. Also, an independent control over the astigmatism aberration has been demonstrated in a broad range. This device has promising applications where aberration compensation is required. The independent compensation achieved for some coefficients, such as astigmatism for example, is more than 2.4 waves.

4.
Rev Sci Instrum ; 84(11): 116105, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24289446

RESUMEN

In this work, a novel equivalent electric circuit for modeling liquid crystal microlenses is proposed. This model is focused on explaining a lens behavior at the micrometric scale, using its manufacturing parameters. It suggests an approach to predict the solution of the voltage gradient distribution across a microlens. An interesting feature of the model is that it provides an analytical solution for microlenses with modal and hole-patterned electrode schemes, by a simple software tool. The model flexibility allows lens designers to apply complex waveform signals with different harmonics. The voltage distribution has been tested. The simulated and measured voltage profiles are fairly in agreement.

5.
Opt Express ; 21(21): 24809-18, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-24150324

RESUMEN

In this study, a novel liquid crystal array based on modal control principle is proposed and demonstrated. The advanced device comprises a six striped electrode structure that forms a configurable 2D matrix of optical elements. A simulation program based on the Frank-Oseen equations and modal control theory has been developed to predict the device electrooptic response, that is, voltage distribution, interference pattern and unwrapped phase. A low-power electronics circuit, that generates complex waveforms, has been built for driving the device. A combined variation of the waveform amplitude and phase has provided a high tuning versatility to the device. Thus, the simulations have demonstrated the generation of a liquid crystal prism array with tunable slope. The proposed device has also been configured as an axicon array. Test measurements have allowed us to demonstrate that electrooptic responses, simulated and empirical, are fairly in agreement.

6.
Rev Sci Instrum ; 84(2): 026102, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23464264

RESUMEN

In this work, a compact design of an electrically tunable notch filter, based on liquid crystal (LC) technology, has been designed, manufactured, and characterized. The proposal has been achieved through particular configuration schemes with low cost inverted-microstrip structures and conventional spurlines structures due to its ease of integration. Central frequency tunability has been induced by applying low ac voltages, thus involving low power consumption. For these devices, filter responses have been approached specifically at microwave C-band frequency allocated for many satellite communications applications. Also, it has taken advantage of new highly anisotropic nematic LC mixtures at those frequency ranges.

7.
Opt Express ; 12(7): 1205-13, 2004 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-19474939

RESUMEN

A protocol based on systematic experimental measurements to characterize the electro-optic behavior of chiral smectic liquid-crystal (LC) materials with V/W-shaped responses is presented. An experimental smectic LC material has been checked by use of this protocol. It has been found that results derived from this procedure permit a reasonable evaluation of the electro-optic performance of these LC materials as well as their capability to be used in high-end display applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA