Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39071295

RESUMEN

Urinary catheterization causes bladder damage, predisposing hosts to catheter-associated urinary tract infections (CAUTIs). CAUTI pathogenesis is mediated by bladder damage-induced inflammation, resulting in accumulation and deposition of the blood-clotting protein fibrinogen (Fg) and its matrix form fibrin, which are exploited by uropathogens as biofilm platforms to establish infection. Catheter-induced inflammation also results in robust immune cell recruitment, including macrophages (Mϕs). A fundamental knowledge gap is understanding the mechanisms by which the catheterized-bladder environment suppresses the Mϕ antimicrobial response, allowing uropathogen persistence. Here, we found that Fg and fibrin differentially modulate M1 and M2 Mϕ polarization, respectively. We unveiled that fibrin accumulation in catheterized mice induced an anti-inflammatory M2-like Mϕ phenotype, correlating with pathogen persistence. Even GM-CSF treatment of wildtype mice to promote M1 polarization was not sufficient to reduce bacterial burden and dissemination, indicating that the catheterized-bladder environment provides mixed signals, dysregulating Mϕ polarization, hindering its antimicrobial response against uropathogens.

2.
PLOS Glob Public Health ; 3(6): e0001971, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37315095

RESUMEN

BACKGROUND AND OBJECTIVE: Estimating the contribution of risk factors of mortality due to COVID-19 is particularly important in settings with low vaccination coverage and limited public health and clinical resources. Very few studies of risk factors of COVID-19 mortality used high-quality data at an individual level from low- and middle-income countries (LMICs). We examined the contribution of demographic, socioeconomic and clinical risk factors of COVID-19 mortality in Bangladesh, a lower middle-income country in South Asia. METHODS: We used data from 290,488 lab-confirmed COVID-19 patients who participated in a telehealth service in Bangladesh between May 2020 and June 2021, linked with COVID-19 death data from a national database to study the risk factors associated with mortality. Multivariable logistic regression models were used to estimate the association between risk factors and mortality. We used classification and regression trees to identify the risk factors that are the most important for clinical decision-making. FINDINGS: This study is one of the largest prospective cohort studies of COVID-19 mortality in a LMIC, covering 36% of all lab-confirmed COVID-19 cases in the country during the study period. We found that being male, being very young or elderly, having low socioeconomic status, chronic kidney and liver disease, and being infected during the latter pandemic period were significantly associated with a higher risk of mortality from COVID-19. Males had 1.15 times higher odds (95% Confidence Interval, CI: 1.09, 1.22) of death compared to females. Compared to the reference age group (20-24 years olds), the odds ratio of mortality increased monotonically with age, ranging from an odds ratio of 1.35 (95% CI: 1.05, 1.73) for ages 30-34 to an odds ratio of 21.6 (95% CI: 17.08, 27.38) for ages 75-79 year group. For children 0-4 years old the odds of mortality were 3.93 (95% CI: 2.74, 5.64) times higher than 20-24 years olds. Other significant predictors were severe symptoms of COVID-19 such as breathing difficulty, fever, and diarrhea. Patients who were assessed by a physician as having a severe episode of COVID-19 based on the telehealth interview had 12.43 (95% CI: 11.04, 13.99) times higher odds of mortality compared to those assessed to have a mild episode. The finding that the telehealth doctors' assessment of disease severity was highly predictive of subsequent COVID-19 mortality, underscores the feasibility and value of the telehealth services. CONCLUSIONS: Our findings confirm the universality of certain COVID-19 risk factors-such as gender and age-while highlighting other risk factors that appear to be more (or less) relevant in the context of Bangladesh. These findings on the demographic, socioeconomic, and clinical risk factors for COVID-19 mortality can help guide public health and clinical decision-making. Harnessing the benefits of the telehealth system and optimizing care for those most at risk of mortality, particularly in the context of a LMIC, are the key takeaways from this study.

3.
Behav Sci (Basel) ; 11(8)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34436095

RESUMEN

Dengue fever is one of the most important viral infections transmitted by Aedes mosquitoes and a major cause of morbidity and mortality globally. Accurate identification of cases and treatment of dengue patients at the early stages can reduce medical complications and dengue mortality rate. This survey aims to determine the knowledge, attitude, and practices (KAP) among physicians in dengue diagnosis and treatment. This study was conducted among physicians in Turkey as one nonendemic country and Bangladesh, India, and Malaysia as three dengue-endemic countries. The dosing frequencies, maximum doses, and contraindications in dengue fever were examined. The results found that physicians from Bangladesh, India, and Malaysia have higher KAP scores in dengue diagnosis and treatment compared to physicians in Turkey. This may be due to a lack of physician's exposure to a dengue patient as Turkey is considered a nonendemic country. This assessment may help establish a guideline for intervention strategies among physicians to have successful treatment outcomes and reduce dengue mortality.

4.
Environ Sci Technol ; 52(10): 5949-5958, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29669210

RESUMEN

The ability to increase pH is a crucial need for desalination pretreatment (especially in reverse osmosis) and for other industries, but processes used to raise pH often incur significant emissions and nonrenewable resource use. Alternatively, waste brine from desalination can be used to create sodium hydroxide, via appropriate concentration and purification pretreatment steps, for input into the chlor-alkali process. In this work, an efficient process train (with variations) is developed and modeled for sodium hydroxide production from seawater desalination brine using membrane chlor-alkali electrolysis. The integrated system includes nanofiltration, concentration via evaporation or mechanical vapor compression, chemical softening, further ion-exchange softening, dechlorination, and membrane electrolysis. System productivity, component performance, and energy consumption of the NaOH production process are highlighted, and their dependencies on electrolyzer outlet conditions and brine recirculation are investigated. The analysis of the process also includes assessment of the energy efficiency of major components, estimation of system operating expense and comparison with similar processes. The brine-to-caustic process is shown to be technically feasible while offering several advantages, that is, the reduced environmental impact of desalination through lessened brine discharge, and the increase in the overall water recovery ratio of the reverse osmosis facility. Additionally, best-use conditions are given for producing caustic not only for use within the plant, but also in excess amounts for potential revenue.


Asunto(s)
Purificación del Agua , Membranas Artificiales , Ósmosis , Sales (Química) , Agua de Mar , Hidróxido de Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA