Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 213: 118109, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35203018

RESUMEN

More than half of new urban residential developments are planned as infill in Australia's major cities. This provides an unprecedented opportunity to use innovative design and technology to address urban water challenges such as flooding, reduced water security and related infrastructure and urban heat island issues. However, infill can have positive or negative water impacts, depending on architectural design and on-site water servicing technologies implemented. In this study we asked, "What influence does residential infill development have on the local urban water cycle?" and "What roles do architectural design and technologies play?" To answer these questions, a set of 196 design-technology configurations were developed by combining 28 architectural designs and 7 on-site water-servicing technology options. The configurations represent three cases: (i) existing (EX) or before infill, (ii) business-as-usual development (BAU), and (iii) alternative development (ALT). Using the Site-scale Urban Water Mass Balance Assessment (SUWMBA) model and a set of water performance indicators, the impact of configurations on the urban water cycle was quantified. The results showed BAU, on average, increases population density, stormwater discharge, and imported water by 98%, 44% and 85%, and decreases evapotranspiration and infiltration by 53% and 34%, compared to the EX conditions. More population density (141%) with lower impacts on the urban water cycle (21% and 64% increase for stormwater discharge and imported water, and 29% and 17% reduction in evapotranspiration and infiltration) can be achieved by appropriate integration of ALT designs and technologies. Architectural design has a greater influence on urban water flows than the implementation of on-site water servicing technologies. The results have a great implication for sustainable urban water management for managing the risks associated with pluvial flooding, water insecurity, and urban heat. It also highlights the underutilised role of architects and urban planners to address urban water issues.

2.
Water Res ; 188: 116477, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33137527

RESUMEN

Historically, little consideration has been given to water performance of urban developments such as "hydrological naturalness" or "local water self-sufficiency". This has led to problems with increased stormwater runoff, flooding, and lack of local contributions to urban water security. Architectural design, water servicing technologies and environmental conditions are each known to influence water performance. However, most existing models have overlooked the integration of these factors. In this work, we asked 'how the water performance of urban developments at site-scale can be quantified, with joint consideration of architectural design, water servicing technologies, and environmental context (i.e. climate and soil)'. Answering this question led to the development of a new method and tool called Site-scale Urban Water Mass Balance Assessment (SUWMBA). It uses a daily urban water mass balance to simulate design-technology-environment configurations. Key features include: (i) a three-dimensional boundary focussed on the "entity" of development (ii) a comprehensive water balance accounting for all urban water flows, (iii) methods that include key variables capturing the interactions of natural, built-environment and socio-technological systems on water performance. SUWMBA's capabilities were demonstrated through an evaluation of a residential infill development case study with alternative design-technology-environment configurations, combining three dwelling designs, seven water technologies and three environmental contexts. The evaluation showed how a configuration can be identified that strikes a balance between the conflicting objectives of achieving the desired dwelling densities whilst simultaneously improving water performance. For two climate zones, the optimal configuration increases the total number of residents by 300% while reducing the imported water per capita and stormwater discharge by 45% and 15%, respectively. We infer that SUWMBA could have strong potential to contribute to performance-based urban design and planning by enabling the water performance of dwelling designs to be quantified, and by facilitating the setting of locally-specific water performance objectives and targets.


Asunto(s)
Conservación de los Recursos Naturales , Abastecimiento de Agua , Ciudades , Hidrología , Lluvia , Tecnología , Agua
4.
Water Res ; 155: 381-402, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30861379

RESUMEN

Instrumentation, control and automation (ICA) are currently applied throughout the urban water system at water treatment plants, in water distribution networks, in sewer networks, and at wastewater treatment plants. However, researchers and practitioners specialising in respective urban water sub-systems do not frequently interact, and in most cases to date the application of ICA has been achieved in silo. Here, we review start-of-the-art ICA throughout these sub-systems, and discuss the benefits achieved in terms of performance improvement, cost reduction, and more importantly, the enhanced capacity of the existing infrastructure to cope with increased service demand caused by population growth and continued urbanisation. We emphasise the importance of integrated control within each of the sub-systems, and also across the entire urban water system. System-wide ICA will have increasing importance with the growing complexity of the urban water environment in cities of the future.


Asunto(s)
Sudoración , Agua , Automatización , Ciudades , Eliminación de Residuos Líquidos , Aguas Residuales , Abastecimiento de Agua
5.
Sci Total Environ ; 630: 992-1002, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29554784

RESUMEN

This paper presents a new model to simulate long-term microbial removal in stormwater biofilters. The water flow module uses a 'three-bucket' approach to describe the flow processes in biofilters, while the microbial quality module employs the one-dimensional advection-dispersion equation to represent microbial transport and fate under different design and operational conditions. Three governing processes for microbial removal, adsorption, desorption and die-off, are included; temperature is also incorporated as a key factor for die-off. The model was tested using long term monitoring data collected from laboratory columns in which five different biofilter configurations were studied over a period of 44weeks. A multi-objective calibration with the balance of instantaneous ponding levels and event outflow volumes was implemented on the water flow module, and the Nash-Sutcliffe Efficiency (E) values ranged from 0.82 to 0.95. The microbial quality module was tested using the effluent Escherichia coli concentration data, and the E values obtained for different configurations were between 0.46 and 0.68. The optimized parameter values agreed with those presented in literature. However, sensitivity analyses suggested that the model's prediction was not sensitive to all parameters, the explanation for which was hypothesized to be data paucity rather than model structural uncertainties. Model validation was also conducted by splitting the data into calibration and validation datasets. The results further reinforced the needed for more data for model calibration.


Asunto(s)
Filtración/métodos , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/microbiología , Microbiología del Agua , Escherichia coli
6.
Phys Rev E ; 95(3-1): 032312, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28415303

RESUMEN

We examine high-resolution urban infrastructure data using every pipe for the water distribution network (WDN) and sanitary sewer network (SSN) in a large Asian city (≈4 million residents) to explore the structure as well as the spatial and temporal evolution of these infrastructure networks. Network data were spatially disaggregated into multiple subnets to examine intracity topological differences for functional zones of the WDN and SSN, and time-stamped SSN data were examined to understand network evolution over several decades as the city expanded. Graphs were generated using a dual-mapping technique (Hierarchical Intersection Continuity Negotiation), which emphasizes the functional attributes of these networks. Network graphs for WDNs and SSNs are characterized by several network topological metrics, and a double Pareto (power-law) model approximates the node-degree distributions of both water infrastructure networks (WDN and SSN), across spatial and hierarchical scales relevant to urban settings, and throughout their temporal evolution over several decades. These results indicate that generic mechanisms govern the networks' evolution, similar to those of scale-free networks found in nature. Deviations from the general topological patterns are indicative of (1) incomplete establishment of network hierarchies and functional network evolution, (2) capacity for growth (expansion) or densification (e.g., in-fill), and (3) likely network vulnerabilities. We discuss the implications of our findings for the (re-)design of urban infrastructure networks to enhance their resilience to external and internal threats.

7.
Water Sci Technol ; 70(11): 1857-72, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25500475

RESUMEN

In contrast to common perceptions, the urban water infrastructure system is a complex and dynamic system that is constantly evolving and adapting to changes in the urban environment, to sustain existing services and provide additional ones. Instead of simplifying urban water infrastructure to a static system that is decoupled from its urban context, new management strategies use the complexity of the system to their advantage by integrating centralised with decentralised solutions and explicitly embedding water systems into their urban form. However, to understand and test possible adaptation strategies, urban water modelling tools are required to support exploration of their effectiveness as the human-technology-environment system coevolves under different future scenarios. The urban water modelling community has taken first steps to developing these new modelling tools. This paper critically reviews the historical development of urban water modelling tools and provides a summary of the current state of integrated modelling approaches. It reflects on the challenges that arise through the current practice of coupling urban water management tools with urban development models and discusses a potential pathway towards a new generation of modelling tools.


Asunto(s)
Ciudades , Conservación de los Recursos Naturales/métodos , Modelos Teóricos , Ciclo Hidrológico , Abastecimiento de Agua , Humanos
8.
Water Res ; 66: 374-389, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25240118

RESUMEN

Long-term projections for key drivers needed in urban water infrastructure planning such as climate change, population growth, and socio-economic changes are deeply uncertain. Traditional planning approaches heavily rely on these projections, which, if a projection stays unfulfilled, can lead to problematic infrastructure decisions causing high operational costs and/or lock-in effects. New approaches based on exploratory modelling take a fundamentally different view. Aim of these is, to identify an adaptation strategy that performs well under many future scenarios, instead of optimising a strategy for a handful. However, a modelling tool to support strategic planning to test the implication of adaptation strategies under deeply uncertain conditions for urban water management does not exist yet. This paper presents a first step towards a new generation of such strategic planning tools, by combing innovative modelling tools, which coevolve the urban environment and urban water infrastructure under many different future scenarios, with robust decision making. The developed approach is applied to the city of Innsbruck, Austria, which is spatially explicitly evolved 20 years into the future under 1000 scenarios to test the robustness of different adaptation strategies. Key findings of this paper show that: (1) Such an approach can be used to successfully identify parameter ranges of key drivers in which a desired performance criterion is not fulfilled, which is an important indicator for the robustness of an adaptation strategy; and (2) Analysis of the rich dataset gives new insights into the adaptive responses of agents to key drivers in the urban system by modifying a strategy.


Asunto(s)
Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Austria , Calibración , Ciudades , Planificación de Ciudades , Cambio Climático , Conservación de los Recursos Naturales , Toma de Decisiones , Geografía , Programas Informáticos , Agua , Abastecimiento de Agua
9.
Water Sci Technol ; 68(8): 1857-65, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24185071

RESUMEN

With global change bringing about greater challenges for the resilient planning and management of urban water infrastructure, research has been invested in the development of a strategic planning tool, DAnCE4Water. The tool models how urban and societal changes impact the development of centralised and decentralised (distributed) water infrastructure. An algorithm for rigorous assessment of suitable decentralised stormwater management options in the model is presented and tested on a local Melbourne catchment. Following detailed spatial representation algorithms (defined by planning rules), the model assesses numerous stormwater options to meet water quality targets at a variety of spatial scales. A multi-criteria assessment algorithm is used to find top-ranking solutions (which meet a specific treatment performance for a user-defined percentage of catchment imperviousness). A toolbox of five stormwater technologies (infiltration systems, surface wetlands, bioretention systems, ponds and swales) is featured. Parameters that set the algorithm's flexibility to develop possible management options are assessed and evaluated. Results are expressed in terms of 'utilisation', which characterises the frequency of use of different technologies across the top-ranking options (bioretention being the most versatile). Initial results highlight the importance of selecting a suitable spatial resolution and providing the model with enough flexibility for coming up with different technology combinations. The generic nature of the model enables its application to other urban areas (e.g. different catchments, local municipal regions or entire cities).


Asunto(s)
Algoritmos , Planificación de Ciudades/métodos , Abastecimiento de Agua , Australia , Modelos Teóricos , Política , Estanques , Calidad del Agua , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA