Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomedicine (Lond) ; 13(3): 255-268, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29338574

RESUMEN

AIM: Nanoparticle-cell interactions can promote cell toxicity and stimulate particular behavioral patterns, but cell responses to protein nanomaterials have been poorly studied. RESULTS: By repositioning oligomerization domains in a simple, modular self-assembling protein platform, we have generated closely related but distinguishable homomeric nanoparticles. Composed by building blocks with modular domains arranged in different order, they share amino acid composition. These materials, once exposed to cultured cells, are differentially internalized in absence of toxicity and trigger distinctive cell adaptive responses, monitored by the emission of tubular filopodia and enhanced drug sensitivity. CONCLUSION: The capability to rapidly modulate such cell responses by conventional protein engineering reveals protein nanoparticles as tuneable, versatile and potent cell stressors for cell-targeted conditioning.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas/uso terapéutico , Proteínas/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Células HeLa , Humanos , Microscopía Electrónica de Rastreo , Nanopartículas/administración & dosificación , Nanopartículas/ultraestructura , Ingeniería de Proteínas , Proteínas/química
2.
Eur J Pharm Sci ; 112: 71-78, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29113920

RESUMEN

The success of viruses in the delivery of the viral genome to target cells relies on the evolutionary selection of protein-based domains able to hijack the intermolecular interactions through which cells respond to intra- and extracellular stimuli. In an effort to mimic viral infection capabilities during non-viral gene delivery, a modular recombinant protein named T-Rp3 was recently developed, containing a DNA binding domain, a dynein molecular motor interacting domain, and a TAT-derived transduction domain. Here, we analyzed at the microscopic level the mechanisms behind the cell internalization and intracellular trafficking of this highly efficient modular protein vector. We found that the protein has the ability to self-assemble in discrete protein nanoparticles resembling viral capsids, to bind and condense plasmid DNA (pDNA), and to interact with eukaryotic cell membranes. Confocal and single particle tracking assays performed on living HeLa cells revealed that the T-Rp3 nanoparticles promoted an impressive speed of cellular uptake and perinuclear accumulation. Finally, the protein demonstrated to be a versatile vector, delivering siRNA at efficiencies comparable to Lipofectamine™. These results demonstrate the high potential of recombinant modular proteins with merging biological functions to fulfill several requirements needed to obtain cost-effective non-viral vectors for gene-based therapies.


Asunto(s)
Dineínas/administración & dosificación , Técnicas de Transferencia de Gen , Nanopartículas/administración & dosificación , ADN/administración & dosificación , Escherichia coli/genética , Células HeLa , Humanos , Plásmidos , Dominios Proteicos/genética , ARN Interferente Pequeño/administración & dosificación , Proteínas Recombinantes/genética
3.
Biotechnol Adv ; 33(2): 277-87, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25698504

RESUMEN

The increasing incidence of diseases affecting the central nervous system (CNS) demands the urgent development of efficient drugs. While many of these medicines are already available, the Blood Brain Barrier and to a lesser extent, the Blood Spinal Cord Barrier pose physical and biological limitations to their diffusion to reach target tissues. Therefore, efforts are needed not only to address drug development but specially to design suitable vehicles for delivery into the CNS through systemic administration. In the context of the functional and structural versatility of proteins, recent advances in their biological fabrication and a better comprehension of the physiology of the CNS offer a plethora of opportunities for the construction and tailoring of plain nanoconjugates and of more complex nanosized vehicles able to cross these barriers. We revise here how the engineering of functional proteins offers drug delivery tools for specific CNS diseases and more transversally, how proteins can be engineered into smart nanoparticles or 'artificial viruses' to afford therapeutic requirements through alternative administration routes.


Asunto(s)
Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Sistema Nervioso Central/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Técnicas de Transferencia de Gen , Barrera Hematoencefálica/efectos de los fármacos , Sistema Nervioso Central/patología , Enfermedades del Sistema Nervioso Central/patología , Humanos , Nanomedicina , Nanopartículas/química , Nanopartículas/uso terapéutico , Ácidos Nucleicos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA