Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Physiol Mol Biol Plants ; 30(3): 483-496, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38633268

RESUMEN

CO2 levels are known to have an impact on plant development and physiology. In the current study, we have investigated the effect of elevated CO2 on flowering and its regulation through miRNA mediated sugar signaling. We also unraveled small RNA transcriptome of pigeonpea under ambient and elevated CO2 conditions and predicted the targets for crucial miRNAs through computational methods. The results have shown that the delayed flowering in pigeonpea under elevated CO2 was due to an imbalance in C:N stoichiometry and differential expression pattern of aging pathway genes, including SQUAMOSA PROMOTER BINDING PROTEIN-LIKE. Furthermore, qRT PCR analysis has revealed the role of miR156 and miR172 in mediating trehalose-6-phosphate dependent flowering regulation. The current study is crucial in understanding the responses of flowering patterns in a legume crop to elevated CO2 which showed a significant impact on its final yields. Also, these findings are crucial in devising effective crop improvement strategies for developing climate resilient crops, including pigeonpea. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01434-9.

2.
Photosynth Res ; 139(1-3): 425-439, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30244353

RESUMEN

In the current study, pigeonpea (Cajanus cajan L.), a promising legume food crop was assessed for its photosynthetic physiology, antioxidative system as well as C and N metabolism under elevated CO2 and combined drought stress (DS). Pigeonpea was grown in open top chambers under elevated CO2 (600 µmol mol-1) and ambient CO2 (390 ± 20 µmol mol-1) concentrations, later subjected to DS by complete water withholding. The DS plants were re-watered and recovered (R) to gain normal physiological growth and assessed the recoverable capacity in both elevated and ambient CO2 concentrations. The elevated CO2 grown pigeonpea showed greater gas exchange physiology, nodule mass and total dry biomass over ambient CO2 grown plants under well-watered (WW) and DS conditions albeit a decrease in leaf relative water content (LRWC). Glucose, fructose and sucrose levels were measured to understand the role of hexose to sucrose ratios (H:S) in mediating the drought responses. Free amino acid levels as indicative of N assimilation provided insights into C and N balance under DS and CO2 interactions. The enzymatic and non-enzymatic antioxidants showed significant upregulation in elevated CO2 grown plants under DS thereby protecting the plant from oxidative damage caused by the reactive oxygen species. Our results clearly demonstrated the protective role of elevated CO2 under DS at lower LRWC and gained comparative advantage of mitigating the DS-induced damage over ambient CO2 grown pigeonpea.


Asunto(s)
Antioxidantes/metabolismo , Cajanus/metabolismo , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Aminoácidos/metabolismo , Sequías
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA