Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Biol Rep ; 49(6): 5473-5482, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35235154

RESUMEN

BACKGROUND: Pistacia is a genus of dioecious plant species whose trees can take 4-5 years to reach the economically valuable fruit-bearing stage. The fruits have great importance as raw material in the food, healthcare, and baking industries. For that reason, the identification of individual plants in the early juvenile period for the pollination and positioning of trees is crucial for growers. The objective of this study is to develop markers for each Pistacia species that can help in screening the sex of plant seedlings before they reach the reproductive stage, without waiting for morphological characteristics to appear. METHODS AND RESULTS: Within this context, by using the power of the kompetitive allele-specific PCR (KASP) assay technology as a marker screening system, we successfully discriminated seven out of eight Pistacia species: P. atlantica, P. integerrima, P. khinjuk, P. mutica, P. terebinthus, P. vera, and P. lentiscus. We used a high-throughput DNA sequence read archive (SRA) to assemble a reference genome that was employed in our studies as a de novo bioinformatics method. Four genomic regions from SRA and three single-nucleotide polymorphism (SNP) positions from Kafkas et al. BMC Genomics 16:98, 2015) were selected and sequenced with collected plant material from predominantly the Antepfistigi Research Institute Collection Garden, and eight species were aligned intraspecifically for SNP mining. In total, 12 SNP markers were converted to KASP markers, and 5 of them (SNP-PIS-133396, SNP-PIS-167992, P-ATL-91951-565, P-INT-91951-256, P-KHI-91951-115) showed clear allelic discrimination between male and female plants. SNP-PIS-167992 and P-ATL-91951-565 were identified as the best marker assays because they showed allelic frequency differences for all individuals and for both homozygous and heterozygous characters. These markers could be the most comprehensive ones for the whole genus because they showed discriminative power for several species. CONCLUSIONS: This study is the first one to use the KASP assay for sex discrimination in Pistacia species, and it can be regarded as a precursor study for sex discrimination by KASP for plants in general.


Asunto(s)
Pistacia , Alelos , Secuenciación de Nucleótidos de Alto Rendimiento , Pistacia/genética , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Nucleótido Simple/genética
2.
Plant Signal Behav ; 14(9): 1633885, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31366277

RESUMEN

Sunflower is a globally important oilseed, food, and ornamental crop. This study seeks to investigate the genotoxic effects of tissue culture parameters in sunflower calli tissues belongs to two genotypes obtained via anther culture. Anthers were pretreated with cold for 24 hours at 4°C and heat for 2 days at 35°C in the dark and plated onto media supplemented with different concentrations and combinations of 6-benzylaminopurine, 2,4-dichlorophenoxyacetic acid, α-naphthalene acetic acid and indole-3-acetic acid. Obtaining calli tissues were used to detect the DNA damage levels by Comet assay, evaluating changes on superoxide dismutase and guaiacol peroxidase activities derived from in vitro culture factors. 0.5 mg/L 2,4-dichlorophenoxyacetic acid and 2 mg/L α-naphthalene acetic acid from plant growth regulators showed acute genotoxic effect while 0.5 mg/L indole-3-acetic acid and 0.5 mg/L α-naphthalene acetic acid showed no genotoxic effect. Total protein content analysis of antioxidant enzymes revealed that although superoxide dismutase activity did not increase, Guaiacol peroxidase (GPOX) activity decreased in comparison to control. The obtained results have indicated that in vitro culture factors apparently lead to genotoxicity and oxidative stress.


Asunto(s)
Flores/crecimiento & desarrollo , Helianthus/crecimiento & desarrollo , Mutágenos/toxicidad , Técnicas de Cultivo de Tejidos , Antioxidantes/metabolismo , Ensayo Cometa , Daño del ADN , ADN de Plantas/genética , Flores/embriología , Genotipo , Helianthus/embriología , Helianthus/genética , Peroxidasa/metabolismo , Proteínas de Plantas/metabolismo , Solubilidad , Superóxido Dismutasa/metabolismo
3.
Open Life Sci ; 13: 319-326, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33817099

RESUMEN

The effectiveness of Pl genes is known to be resistant to downy mildew (DM) disease affected by fungus Plasmopara halstedii in sunflower. In this study phenotypic analysis was performed using inoculation tests and genotypic analysis were carried out with three DM resistance genes Plarg, Pl13 and Pl8. A total of 69 simple sequence repeat markers and 241 F2 individuals derived from a cross of RHA-419 (R) x P6LC (S), RHA-419 (R) x CL (S), RHA-419 (R) x OL (S), RHA419 (R) x 9758R (S), HA-R5 (R) x P6LC (S) and HA89 (R) x P6LC (S) parental lines were used to identify resistant hybrids in sunflower. Results of SSR analysis using markers linked with downy mildew resistance genes (Plarg, Pl8 and Pl13) and downy mildew inoculation tests were evaluated together and ORS716 (for Plarg and Pl13), HA4011 (for Pl8) markers showed positive correlation with their phenotypic results. These results suggest that these markers are associated with DM resistance and they can be used successfully in marker-assisted selection for sunflower breeding programs specific for downy mildew resistance.

4.
Biochem Genet ; 54(5): 619-35, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27246402

RESUMEN

In this study, the patterns of genetic variation and phylogenetic relationships of mastic tree (Pistacia lentiscus L.) genotypes including 12 males and 12 females were evaluated using SSR, RAPD, ISSR, and ITS markers yielding 40, 703, 929 alleles, and 260-292 base pairs for ITS1 region, respectively. The average number of alleles produced from SSR, RAPD, and ISSR primers were 5.7, 14, and 18, respectively. The grouping pattern obtained from Bayesian clustering method based on each marker dataset was produced. Principal component analyses (PCA) of molecular data was investigated and neighbor joining dendrograms were subsequently created. Overall, the results indicated that ISSR and RAPD markers were the most powerful to differentiate the genotypes in comparison with other types of molecular markers used in this study. The ISSR results indicated that male and female genotypes were distinctly separated from each other. In this frame, M9 (Alaçati) and M10 (Mesta Sakiz Adasi-Chios) were the closest genotypes and while F11 (Seferihisar) and F12 (Bornova/Gökdere) genotypes fall into same cluster and showing closer genetic relation. The RAPD pattern indicated that M8 (Urla) and M10 (Mesta Sakiz Adasi-Chios), and F10 (Mesta Sakiz Adasi-Chios) and F11 (Seferihisar) genotypes were the closest male and female genotypes, respectively.


Asunto(s)
ADN de Plantas/genética , Pistacia/genética , Polimorfismo Genético , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados/métodos , Frecuencia de los Genes , Marcadores Genéticos , Filogenia , Análisis de Componente Principal
5.
Biochem Genet ; 54(4): 421-437, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27048293

RESUMEN

Bread wheat (Triticum aestivum L.) gene pool was analyzed with 117 microsatellite markers scattered throughout A, B, and D genomes. Ninety microsatellite markers were giving 1620 polymorphic alleles in 55 different bread wheat genotypes. These genotypes were found to be divided into three subgroups based on Bayesian model and Principal component analysis. The highest polymorphism information content value for the markers resides on A genome was estimated for wmc262 marker located on 4A chromosome with the polymorphism information content value of 0.960. The highest polymorphism information content value (0.954) among the markers known to be located on B genome was realized for wmc44 marker located on 1B chromosome. The highest polymorphism information content value for the markers specific to D genome was found in gwm174 marker located on 5D chromosome with the polymorphism information content value of 0.948. The presence of linkage disequilibrium between 81 pairwise SSR markers reside on the same chromosome was tested and very limited linkage disequilibrium was observed. The results confirmed that the most distant genotype pairs were as follows Ceyhan-99-Behoth 6, Gerek 79-Douma 40989, and Karahan-99-Douma 48114.


Asunto(s)
Mapeo Cromosómico/métodos , Desequilibrio de Ligamiento , Triticum/genética , Teorema de Bayes , Cromosomas de las Plantas/genética , Variación Genética , Genoma de Planta , Repeticiones de Microsatélite
7.
Genet Mol Biol ; 33(4): 719-30, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21637582

RESUMEN

Expressed sequence tag (EST) markers have been used to assess variety and genetic diversity in wheat (Triticum aestivum). In this study, 1549 ESTs from wheat infested with yellow rust were used to examine the genetic diversity of six susceptible and resistant wheat cultivars. The aim of using these cultivars was to improve the competitiveness of public wheat breeding programs through the intensive use of modern, particularly marker-assisted, selection technologies. The F(2) individuals derived from cultivar crosses were screened for resistance to yellow rust at the seedling stage in greenhouses and adult stage in the field to identify DNA markers genetically linked to resistance. Five hundred and sixty ESTs were assembled into 136 contigs and 989 singletons. BlastX search results showed that 39 (29%) contigs and 96 (10%) singletons were homologous to wheat genes. The database-matched contigs and singletons were assigned to eight functional groups related to protein synthesis, photosynthesis, metabolism and energy, stress proteins, transporter proteins, protein breakdown and recycling, cell growth and division and reactive oxygen scavengers. PCR analyses with primers based on the contigs and singletons showed that the most polymorphic functional categories were photosynthesis (contigs) and metabolism and energy (singletons). EST analysis revealed considerable genetic variability among the Turkish wheat cultivars resistant and susceptible to yellow rust disease and allowed calculation of the mean genetic distance between cultivars, with the greatest similarity (0.725) being between Harmankaya99 and Sönmez2001, and the lowest (0.622) between Aytin98 and Izgi01.

8.
Genet. mol. biol ; 33(4): 719-730, 2010.
Artículo en Inglés | LILACS | ID: lil-571524

RESUMEN

Expressed sequence tag (EST) markers have been used to assess variety and genetic diversity in wheat (Triticum aestivum). In this study, 1549 ESTs from wheat infested with yellow rust were used to examine the genetic diversity of six susceptible and resistant wheat cultivars. The aim of using these cultivars was to improve the competitiveness of public wheat breeding programs through the intensive use of modern, particularly marker-assisted, selection technologies. The F2 individuals derived from cultivar crosses were screened for resistance to yellow rust at the seedling stage in greenhouses and adult stage in the field to identify DNA markers genetically linked to resistance. Five hundred and sixty ESTs were assembled into 136 contigs and 989 singletons. BlastX search results showed that 39 (29 percent) contigs and 96 (10 percent) singletons were homologous to wheat genes. The database-matched contigs and singletons were assigned to eight functional groups related to protein synthesis, photosynthesis, metabolism and energy, stress proteins, transporter proteins, protein breakdown and recycling, cell growth and division and reactive oxygen scavengers. PCR analyses with primers based on the contigs and singletons showed that the most polymorphic functional categories were photosynthesis (contigs) and metabolism and energy (singletons). EST analysis revealed considerable genetic variability among the Turkish wheat cultivars resistant and susceptible to yellow rust disease and allowed calculation of the mean genetic distance between cultivars, with the greatest similarity (0.725) being between Harmankaya99 and Sönmez2001, and the lowest (0.622) between Aytin98 and Izgi01.

9.
Acta Biol Hung ; 60(2): 221-32, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19584031

RESUMEN

Effects of salt stress on root growth, mitotic index, nuclear volume, vacuolization, nucleolar distortion and starch content were investigated in Turkish bread wheat ( Triticum aestivum L. cvs. Yildiz - salt sensitive, Dagdas - salt tolerant) and durum wheat ( Triticum durum L. cvs. C1252 - salt sensitive, Meramsalt tolerant) genotypes which were treated with 150 mM NaCI over a 6-day period. Salt treatment of wheat seedlings resulted in a decrease in root elongation and cell division in all genotypes at the 48 hours. According to controls, wheat root length decrease was 49% for Dagdas, 53.34% for Yildiz, 25.34% for Meram, 53.68% for C1252 at the 48 h. Mitotic index showed a more significant decrease in sensitive genotypes (1.24% for Yildiz, 0.66% for C1252 compairing to their controls 3.85% and 3.72%, respectively) of bread and durum wheat rather than tolerant ones (2.21% for Dagdas, 1.57% for Meram compairing to their controls 4.12% and 5.88%, respectively) at the 48 h of salt treatment. Calculated nuclear volume of wheat genotypes besides Dagdas showed a decline at the 48 h ranged from 1.57x10(5) to 2.13x10(5) µm(3) . Vacuolization and nuclear distortion appeared on DAPI-stained preparations. There was a clear reduction in starch content in salt treated genotypes of durum wheat.


Asunto(s)
Sales (Química)/química , Triticum/metabolismo , Pan , Núcleo Celular/metabolismo , Genotipo , Indoles/farmacología , Mitosis , Raíces de Plantas/metabolismo , Semillas/química , Semillas/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA