Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 106(7): 077202, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21405538

RESUMEN

The numerical simulation of quantum many-body dynamics is typically limited by the linear growth of entanglement with time. Recently numerical studies have shown that for 1D Bethe-integrable models the simulation of local operators in the Heisenberg picture can be efficient. Using the spin-1/2 XX chain as generic example of an integrable model that can be mapped to free fermions, we provide a simple explanation for this. We show furthermore that the same reduction of complexity applies to operators that have a high-temperature autocorrelation function which decays slower than exponential, i.e., with a power law. Thus efficient simulability may already be implied by a single conservation law as we will illustrate numerically for the spin-1 XXZ model.

2.
Phys Rev Lett ; 101(16): 163601, 2008 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-18999667

RESUMEN

We propose and analyze a mechanism for Bose-Einstein condensation of stationary dark-state polaritons. Dark-state polaritons (DSPs) are formed in the interaction of light with laser-driven 3-level Lambda-type atoms and are the basis of phenomena such as electromagnetically induced transparency, ultraslow, and stored light. They have long intrinsic lifetimes and in a stationary setup, a 3D quadratic dispersion profile with variable effective mass. Since DSPs are bosons, they can undergo a Bose-Einstein condensation at a critical temperature which can be many orders of magnitude larger than that of atoms. We show that thermalization of polaritons can occur via elastic collisions mediated by a resonantly enhanced optical Kerr nonlinearity on a time scale short compared to the decay time. Finally, condensation can be observed by turning stationary into propagating polaritons and monitoring the emitted light.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA