Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000682

RESUMEN

Continuous carbon fiber-reinforced (CCFR) thermoset composites have received significant attention due to their excellent mechanical and thermal properties. The implementation of 3D printing introduces cost-effectiveness and design flexibility into their manufacturing processes. The light-assisted 3D printing process shows promise for manufacturing CCFR composites using low-viscosity thermoset resin, which would otherwise be unprintable. Because of the lack of shape-retaining capability, 3D printing of various shapes is challenging with low-viscosity thermoset resin. This study demonstrated an overshoot-associated algorithm for 3D printing various shapes using low-viscosity thermoset resin and continuous carbon fiber. Additionally, 3D-printed unidirectional composites were mechanically characterized. The printed specimen exhibited tensile strength of 390 ± 22 MPa and an interlaminar strength of 38 ± 1.7 MPa, with a fiber volume fraction of 15.7 ± 0.43%. Void analysis revealed that the printed specimen contained 5.5% overall voids. Moreover, the analysis showed the presence of numerous irregular cylindrical-shaped intra-tow voids, which governed the tensile properties. However, the inter-tow voids were small and spherical-shaped, governing the interlaminar shear strength. Therefore, the printed specimens showed exceptional interlaminar shear strength, and the tensile strength had the potential to increase further by improving the impregnation of polymer resin within the fiber.

2.
Polymers (Basel) ; 15(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36987165

RESUMEN

Additive manufacturing (AM) is one of the fastest-growing manufacturing technologies in modern times. One of the major challenges in the application of 3D-printed polymeric objects is expanding the applications to structural components, as they are often limited by their mechanical and thermal properties. To enhance the mechanical properties of 3D-printed thermoset polymer objects, reinforcing the polymer with continuous carbon fiber (CF) tow is an expanding direction of research and development. A 3D printer was constructed capable of printing with a continuous CF-reinforced dual curable thermoset resin system. Mechanical performance of the 3D-printed composites varied with the utilization of different resin chemistries. Three different commercially available violet light curable resins were mixed with a thermal initiator to improve curing by overcoming the shadowing effect of violet light by the CF. The resulting specimens' compositions were analyzed, and then the specimens were mechanically characterized for comparison in tensile and flexural performance. The 3D-printed composites' compositions were correlated to the printing parameters and resin characteristics. Slight enhancements in tensile and flexural properties from some commercially available resins over others appeared to be the result of better wet-out and adhesion.

3.
Molecules ; 25(12)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560446

RESUMEN

Biocomposites can be both environmentally and economically beneficial: during their life cycle they generally use and generate less petroleum-based carbon, and when produced from the byproduct of another industry or recycled back to the manufacturing process, they will bring additional economic benefits through contributing to a circular economy. Here we investigate and compare the environmental performance of a biocomposite composed of a soybean oil-based resin (epoxidized sucrose soyate) and flax-based reinforcement using life cycle assessment (LCA) methodology. We evaluate the main environmental impacts that are generated during the production of the bio-based resin used in the biocomposite, as well as the biocomposite itself. We compare the life cycle impacts of the proposed biocomposite to a functionally similar petroleum-based resin and flax fiber reinforced composite, to identify tradeoffs between the environmental performance of the two products. We demonstrate that the bio-based resin (epoxidized sucrose soyate) compared to a conventional (bisphenol A-based) resin shows lower negative environmental impacts in most studied categories. When comparing the biocomposite to the fossil fuel derived composite, it is demonstrated that using epoxidized sucrose soyate versus a bisphenol A (BPA)-based epoxy resin can improve the environmental performance of the composite in most categories except eutrophication and ozone layer depletion. For future designs, considering an alternative cross-linker to facilitate the bond between the bio-based resin and the flax fiber, may help improve the overall environmental performance of the biocomposite. An uncertainty analysis was also performed to evaluate the effect of variation in LCA model inputs on the environmental results for both the biocomposite and composite. The findings show a better overall carbon footprint for the biocomposite compared to the BPA-based composite at almost all times, demonstrating a good potential for marketability especially in the presence of incentives or regulations that address reducing the carbon intensity of products. This analysis allowed us to pinpoint hotspots in the biocomposite's supply chain and recommend future modifications to improve the product's sustainability.


Asunto(s)
Resinas Epoxi/química , Resinas Epoxi/síntesis química , Sacarosa/química , Ambiente
4.
J Renew Mater ; 5(Suppl 1): 62-73, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29417961

RESUMEN

Wheat bran, abundant but underutilized, was investigated for its potential as a reinforcement in biocomposites through different pretreatment methods. Pretreatment methods included were dilute sodium hydroxide (NaOH), dilute sulfuric acid (H2SO4), liquid hot water (LHW), calcium hydroxide (CaOH), organosolv such as aqueous ethanol (EtOH), and methyl isobutyl ketone (MIBK). Changes in chemical composition and fiber characteristics of the treated bran were studied using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Cellulose content increased to 35.1% and 29.6% in brans treated with H2SO4 and NaOH, respectively. The SEM micrographs showed surface cleaning of treated bran while maintaining sufficient surface roughness for the H2SO4, NaOH, and MIBK treated brans. Crystallinity index increased slightly for all treatments except H2SO4. NaOH and H2SO4 pretreated brans achieved important fiber characteristics, which could be useful for making thermoplastic biocomposites. Innovative use of bran in thermoplastic will create more opportunities for growers while enhancing biodegradability.

5.
Polymers (Basel) ; 8(4)2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-30979245

RESUMEN

With the increase in structural applications of bio-based composites, the study of long-term creep behavior of these materials turns into a significant issue. Because of their bond type and structure, natural fibers and thermoset resins exhibit nonlinear viscoelastic behavior. Time-temperature superposition (TTS) provides a useful tool to overcome the challenge of the long time required to perform the tests. The TTS principle assumes that the effect of temperature and time are equivalent when considering the creep behavior, therefore creep tests performed at elevated temperatures may be converted to tests performed at longer times. In this study, flax fiber composites were processed with a novel liquid molding methacrylated epoxidized sucrose soyate (MESS) resin. Frequency scans of flax/MESS composites were obtained at different temperatures and storage modulus and loss modulus were recorded and the application of horizontal and vertical shift factors to these viscoelastic functions were studied. In addition, short-term strain creep at different temperatures was measured and curves were shifted with solely horizontal, and with both horizontal and vertical shift factors. The resulting master curves were compared with a 24-h creep test and two extrapolated creep models. The findings revealed that use of both horizontal and vertical shift factors will result in a smoother master curves for loss modulus and storage modulus, while use of only horizontal shift factors for creep data provides acceptable creep strain master curves. Based on the findings of this study, flax/MESS composites can be considered as thermorheologically complex materials.

6.
Materials (Basel) ; 9(5)2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28773512

RESUMEN

In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU) composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA), specific gravity (SG), coefficient of linear thermal expansion (CLTE), flexural and compression properties, and hardness. The mechanical properties of hybridized samples showed mixed trends compared to the unhybridized samples, but hybridization with glass fiber reduced water absorption by 37% and 43% for flax and hemp-agave PU composites respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA