RESUMEN
Food production in areas contaminated by industrial wastes poses a serious risk to farmers and consumers. Here, we evaluate Cd, Cr, Ni, and Pb concentrations in the soils and the edible parts of lettuce, chives, tomatoes, pepper, and cassava plants grown by small farmers in areas contaminated by slag from an abandoned steel plant in Havana, Cuba. The total, environmentally available, and bioavailable concentrations of metals in the soils and the metals bioconcentration factor in the plants were determined. The risks to human health from food and soil ingestion were estimated. The total and environmentally available concentrations of Cd, Cr, and Pb were above values considered safe by international standards, with likely adverse effect on human health. Cadmium was the most bioavailable metal, reflected in the highest accumulation in the crops' edible parts. Even with negligible DTPA-available Cr concentrations in soils, the Cr concentrations in edible parts of the crops exceeded regulatory levels, suggesting that rhizosphere mechanisms may increase Cr availability. The consumption of vegetables represented 70% of the daily intake dose for Cr, Cd, and Ni, while accidental ingestion of contaminated soil is the predominant human exposure route for Pb. Our results demonstrated the health risks associated with cultivating and consuming vegetables grown on metal contaminated soils in Havana and can assist public policies capable of guaranteeing the sustainability of urban agriculture and food security.
Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Residuos Industriales/análisis , Metales Pesados/análisis , Metales Pesados/toxicidad , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Acero , VerdurasRESUMEN
The potential threat of heavy metals to human health has led to many studies on permissible levels of these elements in soils. The objective of this study was to establish quality reference values (QRVs) for Cd, Pb, Zn, Cu, Ni, Cr, Fe, Mn, As, Hg, V, Ba, Sb, Ag, Co, and Mo in soils of Cuba. Geochemical associations between trace elements and Fe were also studied, aiming to provide an index for establishing background concentrations of metals in soils. Surface samples of 33 soil profiles from areas of native forest or minimal anthropic influence were collected. Samples were digested (USEPA method 3051A), and the metals were determined by ICP-OES. The natural concentrations of metals in soils of Cuba followed the order Fe > Mn > Ni > Cr > Ba > V > Zn > Cu > Pb > Co > As > Sb > Ag > Cd > Mo > Hg. The QRVs found for Cuban soils were as follows (mg kg(-1)): Ag (1), Ba (111), Cd (0.6), Co (25), Cr (153), Cu (83), Fe (54,055), Mn (1947), Ni (170), Pb (50), Sb (6), V (137), Zn (86), Mo (0.1), As (19), and Hg (0.1). The average natural levels of heavy metals are above the global average, especially for Ni and Cr. The chemical fractionation of soil samples presenting anomalous concentrations of metals showed that Cu, Ni, Cr, Sb, and As have low bioavailability. This suggests that the risk of contamination of agricultural products via plant uptake is low. However, the final decision on the establishment of soil QRVs in Cuba depends on political, economic, and social issues and in-depth risk analyses considering all routes of exposure to these elements.