Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202402821, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253989

RESUMEN

A series of 3,3"- and 4,4"-dimethoxy terphenyls with different second substituents on their ortho-positions have been synthesized and investigated upon the possibility to be oxidatively cyclodehydrogenated to the corresponding triphenylenes under Scholl-type conditions. The experimentally obtained selectivities were supported and explained by quantum chemical calculations and conclusions on the involved mechanisms (acid catalyzed arenium-ion mechanism (AIM) vs radical cation mechanism) were drawn.

2.
Angew Chem Int Ed Engl ; : e202412939, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115106

RESUMEN

Hole-collecting monolayers have greatly advanced the development of positive-intrinsic-negative perovskite solar cells (p-i-n PSCs). To date, however, most of the anchoring groups in the reported monolayer materials are designed to bind to the transparent conductive oxide (TCO) surface, resulting in less availability for other functions such as tuning the wettability of the monolayer surface. In this work, we developed two anchorable molecules, 4PATTI-C3 and 4PATTI-C4, by employing a saddle-like indole-fused cyclooctatetraene as a p-core with four phosphonic acid anchoring groups linked through propyl or butyl chains. Both molecules form monolayers on TCO substrates. Thanks to the saddle shape of a cyclooctatetraene skeleton, two of the four phosphonic acid anchoring groups were found to point upward, resulting in hydrophilic surfaces. Compared to the devices using 4PATTI-C4 as the hole-collecting monolayer, 4PATTI-C3-based devices exhibit a faster hole-collection process, leading to higher power conversion efficiencies of up to 21.7% and 21.4% for a mini-cell (0.1 cm2) and a mini-module (1.62 cm2), respectively, together with good operational stability. This work represents how structural modification of multipodal molecules could substantially modulate the functions of the hole-collecting monolayers after being adsorbed onto TCO substrates.

3.
J Am Chem Soc ; 145(13): 7528-7539, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36947735

RESUMEN

Hole-collecting monolayers have drawn attention in perovskite solar cell research due to their ease of processing, high performance, and good durability. Since molecules in the hole-collecting monolayer are typically composed of functionalized π-conjugated structures, hole extraction is expected to be more efficient when the π-cores are oriented face-on with respect to the adjacent surfaces. However, strategies for reliably controlling the molecular orientation in monolayers remain elusive. In this work, multiple phosphonic acid anchoring groups were used to control the molecular orientation of a series of triazatruxene derivatives chemisorbed on a transparent conducting oxide electrode surface. Using infrared reflection absorption spectroscopy and metastable atom electron spectroscopy, we found that multipodal derivatives align face-on to the electrode surface, while the monopodal counterpart adopts a more tilted configuration. The face-on orientation was found to facilitate hole extraction, leading to inverted perovskite solar cells with enhanced stability and high-power conversion efficiencies up to 23.0%.

4.
Chem Rec ; 21(3): 558-573, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33411413

RESUMEN

In materials chemistry of polycyclic aromatic compounds (PACs) the kind of aggregation and the spatial arrangement of the π-planes are of utmost importance, e. g. for charge transport properties. Unfortunately, controlling these during crystallization is not trivial. In the past decade, we have introduced one-fold triptycene end-capping of quinoxalinophenanthrophenazines (QPPs) and other related structures to overcome this problem. When two instead of one triptycene end-caps are introduced, packing is largely suppressed, making typical PACs or pigments soluble in common organic solvents - which is another important property for such compounds to be processable from solution. In this account an overview of our research on using triptycene end-capping as dual strategy is given.

5.
Chemistry ; 27(6): 2043-2049, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-32954544

RESUMEN

A six-step synthesis towards a tribenzotriquinacene (TBTQ) bearing three quinoxalinophenanthrophenazine (QPP) units is presented. The optoelectronic properties are investigated and the effect of the three-dimensional arrangement of the individual QPP planes is examined using optical spectroscopy, electrochemical analysis and quantum-chemical calculations.

6.
Chemistry ; 26(55): 12596-12605, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32368815

RESUMEN

Previously it was demonstrated that triptycene end-capping can be used as a crystal engineering strategy to direct the packing of quinoxalinophenanthrophenazines (QPPs) towards cofacially stacked π dimers with large molecular overlap resulting in high charge transfer integrals. Remarkably, this packing motif was formed under different crystallization conditions and with a variety of derivatives bearing additional functional groups or aromatic substituents. Benzothienobenzothiophene (BTBT) and its derivatives are known as some of the best performing compounds for organic field-effect transistors. Here, the triptycene end-capping concept is introduced to this class of compounds and polymorphic crystal structures are investigated to evaluate the potential of triptycene end-caps as synthons for crystal engineering.

7.
Chemistry ; 26(50): 11634-11642, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32459010

RESUMEN

Five di- and tetracyano-substituted pyrene-fused pyrazaacenes were synthesized and studied as potential electron acceptors in the solid state. Single crystals of all compounds were grown and the crystal packing studied by DFT calculations (transfer integrals and reorganization energies) to get insight into possible use for semiconducting charge transport.

8.
Chemistry ; 25(47): 11121-11134, 2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31210369

RESUMEN

Triptycene end-capped quinoxalinophenanthrophenazine reveals a coplanar arrangement with a high overlap of the π planes. Four structurally related model compounds bearing electron-withdrawing or -donating groups were synthesized, and their optoelectronic properties were characterized by using cyclovoltammetry, absorption- and emission spectroscopy as well as theoretical calculations. The directional robustness of the triptycene end-capping of these compounds was tested by using single-crystal X-ray diffraction. The impact of solvents and crystallization conditions has also been investigated. In total, 17 single-crystal structures were obtained. Each structure was evaluated for its potential charge-transfer capability taking into account the overall molecular packing, solvent enclathration and the structural overlap of the π planes of adjacent molecules. For this purpose, charge-transfer integrals were also calculated for every π-stacked dimer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA