Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2848: 269-297, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240529

RESUMEN

Dynamic interactions between transcription factors govern changes in gene expression that mediate changes in cell state accompanying injury response and regeneration. Transcription factors frequently function as obligate dimers whose activity is often modulated by post-translational modifications. These critical and often transient interactions are not easily detected by traditional methods to investigate protein-protein interactions. This chapter discusses the design and validation of a fusion protein involving a transcription factor tethered to a proximity labeling ligase, APEX2. In this technique, proteins are biotinylated within a small radius of the transcription factor of interest, regardless of time of interaction. Here we discuss the validations required to ensure proper functioning of the transcription factor proximity labeling tool and the sample preparation of biotinylated proteins for mass spectrometry analysis of putative protein interactors.


Asunto(s)
Biotinilación , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Mapeo de Interacción de Proteínas , Factores de Transcripción , Mapeo de Interacción de Proteínas/métodos , Humanos , Factores de Transcripción/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Unión Proteica , Espectrometría de Masas/métodos , Procesamiento Proteico-Postraduccional , Endonucleasas , Enzimas Multifuncionales
2.
Data Brief ; 49: 109313, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37448735

RESUMEN

CNS injuries of the anuran amphibian, Xenopus laevis, are uniquely suited for studying the molecular compositions of neuronal regeneration of retinal ganglion cells (RGC) due to a functional recovery of optic axons disparate to adult mammalian analogues. RGCs and their optic nerve axons undergo irreversible neurodegeneration in glaucoma and associated optic neuropathies, resulting in blindness in mammals. Conversely, Xenopus demonstrates RGC lifetime-spanning regenerative capabilities after optic nerve crush [1], inciting opportunities to compare de novo regeneration and develop efficient pharmaceutical approaches for vision restoration. Studies revealing lipidome alterations during optic nerve regeneration are sparse and could serve as a solid foundation for these underlying molecular changes. We profile the lipid changes in a transgenic line of 1 year old Xenopus laevis Tg(islet2b:gfp) frogs that were either left untreated (naïve) or had a monocular surgery of either a left optic crush injury (crush) or sham surgery (sham). Matching controls of uninjured right optic nerves were also collected (control). Tg(islet2b:gfp) frogs were allowed to recover for 7,12,18, and 27 days post optic nerve crush. Following euthanasia, the optic nerves were collected for lipidomic analysis. A modified Bligh and Dyer method [2] was used for lipid extraction, followed by untargeted mass spectrometry lipid profiling with a Q Exactive Orbitrap Mass Spectrometer coupled with a Vanquish Horizon Binary UHPLC LC-MS system (LC MS-MS). The raw scans were analyzed and quantified with LipidSearch 5.0 and the statistical analysis was conducted through Metaboanalyst 5.0. This data is available at Metabolomics Workbench, study ID [ST002414].

3.
Methods Mol Biol ; 2636: 323-341, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36881309

RESUMEN

A time-course series utilizing assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) can be used to detect changes in accessibility of DNA regulatory elements such as promoters and enhancers over the course of regeneration. This chapter describes methods for preparing ATAC-seq libraries from isolated zebrafish retinal ganglion cells (RGCs) following optic nerve crush at selected post-injury time points. These methods have been used for identifying dynamic changes in DNA accessibility that govern successful optic nerve regeneration in zebrafish. This method may be adapted to identify changes in DNA accessibility that accompany other types of insults to RGCs or to identify changes that occur over the course of development.


Asunto(s)
Axones , Pez Cebra , Animales , Pez Cebra/genética , Regeneración Nerviosa , Nervio Óptico , ADN , Células Ganglionares de la Retina
4.
G3 (Bethesda) ; 9(12): 3953-3959, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31575636

RESUMEN

Time-course high-throughput assays of gene expression and enhancer usage in zebrafish provide a valuable characterization of the dynamic mechanisms governing gene regulatory programs during CNS axon regeneration. To facilitate the exploration and functional interpretation of a set of fully-processed data on regeneration-associated temporal transcription networks, we have created an interactive web application called Regeneration Rosetta Using either built-in or user-provided lists of genes in one of dozens of supported organisms, our web application facilitates the (1) visualization of clustered temporal expression trends; (2) identification of proximal and distal regions of accessible chromatin to expedite downstream motif analysis; and (3) description of enriched functional gene ontology categories. By enabling a straightforward interrogation of these rich data without extensive bioinformatic expertise, Regeneration Rosetta is broadly useful for both a deep investigation of time-dependent regulation during regeneration in zebrafish and hypothesis generation in other organisms.


Asunto(s)
Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Internet , Regeneración Nerviosa/genética , Programas Informáticos , Animales , Evolución Biológica , Colesterol/metabolismo , Genoma , Lípidos/biosíntesis , Nervio Óptico/patología , Nervio Óptico/fisiopatología , Pez Cebra/genética
5.
Sci Rep ; 9(1): 14198, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578350

RESUMEN

In contrast to mammals, adult fish display a remarkable ability to fully regenerate central nervous system (CNS) axons, enabling functional recovery from CNS injury. Both fish and mammals normally undergo a developmental downregulation of axon growth activity as neurons mature. Fish are able to undergo damage-induced "reprogramming" through re-expression of genes necessary for axon growth and guidance, however, the gene regulatory mechanisms remain unknown. Here we present the first comprehensive analysis of gene regulatory reprogramming in zebrafish retinal ganglion cells at specific time points along the axon regeneration continuum from early growth to target re-innervation. Our analyses reveal a regeneration program characterized by sequential activation of stage-specific pathways, regulated by a temporally changing cast of transcription factors that bind to stably accessible DNA regulatory regions. Strikingly, we also find a discrete set of regulatory regions that change in accessibility, consistent with higher-order changes in chromatin organization that mark (1) the beginning of regenerative axon growth in the optic nerve, and (2) the re-establishment of synaptic connections in the brain. Together, these data provide valuable insight into the regulatory logic driving successful vertebrate CNS axon regeneration, revealing key gene regulatory candidates for therapeutic development.


Asunto(s)
Reprogramación Celular/genética , Regeneración Nerviosa/genética , Células Ganglionares de la Retina/metabolismo , Factores de Transcripción/genética , Animales , Axones/metabolismo , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Humanos , Nervio Óptico/crecimiento & desarrollo , Nervio Óptico/patología , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/patología , Recuperación de la Función/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
6.
Microbiology (Reading) ; 165(3): 302-310, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30648943

RESUMEN

Catecholamine hormones enhance the virulence of pathogenic bacteria. Studies in the 1980s made intriguing observations that catecholamines were required for induction of sulfatase activity in many enteric pathogens, including Salmonella enterica serovar Typhimurium. In this report, we show that STM3122 and STM3124, part of horizontally acquired Salmonella pathogenesis island 13, encode a catecholamine-induced sulfatase and its regulator, respectively. Induction of sulfatase activity was independent of the well-studied QseBC and QseEF two-component regulatory systems. S. Typhimurium 14028S mutants lacking STM3122 or STM3124 showed reduced virulence in zebrafish. Because catecholamines are inactivated by sulfation in the mammalian gut, S. Typhimurium could utilize CA-induced sulfatase to access free catecholamines for growth and virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dopamina/metabolismo , Salmonella typhimurium/enzimología , Salmonella typhimurium/patogenicidad , Sulfatasas/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Bacterianas/genética , Dopamina/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Islas Genómicas/genética , Viabilidad Microbiana , Mutación , Periplasma/metabolismo , Salmonelosis Animal/microbiología , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Sulfatasas/genética , Factores de Transcripción/genética , Virulencia , Pez Cebra/microbiología
7.
Dis Model Mech ; 11(12)2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30409814

RESUMEN

The neural crest (NC) is a transient population of embryonic progenitors that are implicated in a diverse range of congenital birth defects and pediatric syndromes. The broad spectrum of NC-related disorders can be attributed to the wide variety of differentiated cell types arising from the NC. In vitro models of NC development provide a powerful platform for testing the relative contributions of intrinsic and extrinsic factors mediating NC differentiation under normal and pathogenic conditions. Although differentiation is a dynamic process that unfolds over time, currently, there is no well-defined chronology that characterizes the in vitro progression of NC differentiation towards specific cell fates. In this study, we have optimized culture conditions for expansion of primary murine NC cells that give rise to both ectodermal and mesoectodermal derivatives, even after multiple passages. Significantly, we have delineated highly reproducible timelines that include distinct intermediate stages for lineage-specific NC differentiation in vitro In addition, isolating both cranial and trunk NC cells from the same embryos enabled us to make direct comparisons between the two cell populations over the course of differentiation. Our results define characteristic changes in cell morphology and behavior that track the temporal progression of NC cells as they differentiate along the neuronal, glial and chondrogenic lineages in vitro These benchmarks constitute a chronological baseline for assessing how genetic or environmental disruptions may facilitate or impede NC differentiation. Introducing a temporal dimension substantially increases the power of this platform for screening drugs or chemicals for developmental toxicity or therapeutic potential. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Cresta Neural/citología , Cráneo/citología , Torso/fisiología , Animales , Diferenciación Celular/genética , Proliferación Celular , Autorrenovación de las Células , Forma de la Célula , Células Cultivadas , Condrocitos/citología , Regulación del Desarrollo de la Expresión Génica , Ratones , Neuroglía/citología , Neuronas/citología , Factores de Tiempo
8.
PLoS One ; 10(3): e0118918, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25751153

RESUMEN

Unlike CNS neurons in adult mammals, neurons in fish and embryonic mammals can regenerate their axons after injury. These divergent regenerative responses are in part mediated by the growth-associated expression of select transcription factors. The basic helix-loop-helix (bHLH) transcription factor, MASH1/Ascl1a, is transiently expressed during the development of many neuronal subtypes and regulates the expression of genes that mediate cell fate determination and differentiation. In the adult zebrafish (Danio rerio), Ascl1a is also transiently expressed in retinal ganglion cells (RGCs) that regenerate axons after optic nerve crush. Utilizing transgenic zebrafish with a 3.6 kb GAP43 promoter that drives expression of an enhanced green fluorescent protein (EGFP), we observed that knock-down of Ascl1a expression reduces both regenerative gap43 gene expression and axonal growth after injury compared to controls. In mammals, the development of noradrenergic brainstem neurons requires MASH1 expression. In contrast to zebrafish RGCs, however, MASH1 is not expressed in the mammalian brainstem after spinal cord injury (SCI). Therefore, we utilized adeno-associated viral (AAV) vectors to overexpress MASH1 in four month old rat (Rattus norvegicus) brainstem neurons in an attempt to promote axon regeneration after SCI. We discovered that after complete transection of the thoracic spinal cord and implantation of a Schwann cell bridge, animals that express MASH1 exhibit increased noradrenergic axon regeneration and improvement in hindlimb joint movements compared to controls. Together these data demonstrate that MASH1/Ascl1a is a fundamental regulator of axonal growth across vertebrates and can induce modifications to the intrinsic state of neurons to promote functional regeneration in response to CNS injury.


Asunto(s)
Axones/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteína GAP-43/metabolismo , Regeneración Nerviosa , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tronco Encefálico/citología , Tronco Encefálico/metabolismo , Sistema Nervioso Central/citología , Dependovirus/genética , Dependovirus/metabolismo , Proteína GAP-43/genética , Técnicas de Silenciamiento del Gen , Terapia Genética , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Ratas , Traumatismos de la Médula Espinal/terapia , Factores de Transcripción , Proteínas de Pez Cebra/genética
9.
Eur J Neurosci ; 40(1): 2225-40, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24738729

RESUMEN

It is well established that cholinergic signaling has critical roles during central nervous system development. In physiological and behavioral studies, activation of nicotinic acetylcholine receptors (nAChRs) has been implicated in mediating cholinergic signaling. In developing spinal cord, cholinergic transmission is associated with neural circuits responsible for producing locomotor behaviors. In this study, we investigated the expression pattern of the α2A nAChR subunit as previous evidence suggested it could be expressed by spinal neurons. In situ hybridization and immunohistochemistry revealed that the α2A nAChR subunits are expressed in spinal Rohon-Beard (RB) neurons and olfactory sensory neurons in young embryos. To examine the functional role of the α2A nAChR subunit during embryogenesis, we blocked its expression using antisense modified oligonucleotides. Blocking the expression of α2A nAChR subunits had no effect on spontaneous motor activity. However, it did alter the embryonic nicotine-induced motor output. This reduction in motor activity was not accompanied by defects in neuronal and muscle elements associated with the motor output. Moreover, the anatomy and functionality of RB neurons was normal even in the absence of the α2A nAChR subunit. Thus, we propose that α2A-containing nAChRs are dispensable for normal RB development. However, in the context of nicotine-induced motor output, α2A-containing nAChRs on RB neurons provide the substrate that nicotine acts upon to induce the motor output. These findings also indicate that functional neuronal nAChRs are present within spinal cord at the time when locomotor output in zebrafish first begins to manifest itself.


Asunto(s)
Actividad Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Animales , Animales Modificados Genéticamente , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Hibridación in Situ , Morfolinos/metabolismo , Actividad Motora/fisiología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/fisiología , Neuronas/fisiología , Neuronas Receptoras Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/embriología , Neuronas Receptoras Olfatorias/fisiología , Oligonucleótidos Antisentido/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Médula Espinal/efectos de los fármacos , Médula Espinal/embriología , Médula Espinal/fisiología , Pez Cebra
10.
PLoS Genet ; 7(2): e1001310, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21379331

RESUMEN

The glaucomas comprise a genetically complex group of retinal neuropathies that typically occur late in life and are characterized by progressive pathology of the optic nerve head and degeneration of retinal ganglion cells. In addition to age and family history, other significant risk factors for glaucoma include elevated intraocular pressure (IOP) and myopia. The complexity of glaucoma has made it difficult to model in animals, but also challenging to identify responsible genes. We have used zebrafish to identify a genetically complex, recessive mutant that shows risk factors for glaucoma including adult onset severe myopia, elevated IOP, and progressive retinal ganglion cell pathology. Positional cloning and analysis of a non-complementing allele indicated that non-sense mutations in low density lipoprotein receptor-related protein 2 (lrp2) underlie the mutant phenotype. Lrp2, previously named Megalin, functions as an endocytic receptor for a wide-variety of bioactive molecules including Sonic hedgehog, bone morphogenic protein 4, retinol-binding protein, vitamin D-binding protein, and apolipoprotein E, among others. Detailed phenotype analyses indicated that as lrp2 mutant fish age, many individuals--but not all--develop high IOP and severe myopia with obviously enlarged eye globes. This results in retinal stretch and prolonged stress to retinal ganglion cells, which ultimately show signs of pathogenesis. Our studies implicate altered Lrp2-mediated homeostasis as important for myopia and other risk factors for glaucoma in humans and establish a new genetic model for further study of phenotypes associated with this disease.


Asunto(s)
Ojo/patología , Glaucoma/complicaciones , Glaucoma/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Mutación/genética , Miopía/complicaciones , Miopía/genética , Proteínas de Pez Cebra/genética , Envejecimiento/patología , Secuencia de Aminoácidos , Animales , Apoptosis , Axones/patología , Secuencia de Bases , Recuento de Células , Proliferación Celular , Modelos Animales de Enfermedad , Glaucoma/fisiopatología , Hidroftalmía/complicaciones , Presión Intraocular , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/química , Datos de Secuencia Molecular , Miopía/fisiopatología , Disco Óptico/patología , Disco Óptico/ultraestructura , Tamaño de los Órganos , Fenotipo , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Factores de Riesgo , Estrés Fisiológico/genética , Regulación hacia Arriba , Pez Cebra/genética , Proteínas de Pez Cebra/química
11.
Dev Dyn ; 239(9): 2443-51, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20652955

RESUMEN

Nervous system assembly and function depends on precise regulation of developmental gene expression. Cabin1, an essential gene in developing mice, is enriched in regions of the developing zebrafish central nervous system (CNS). Cabin1 is a repressor of MEF2- (myocyte enhancer factor 2) and calcineurin-mediated transcription in the immune system, but its function in the CNS during development is unknown. We identified Cabin1 from a library of genes enriched in developing neurons and determined the temporal and spatial expression of Cabin1 mRNA during CNS development. We found Cabin1 mRNA expression in the developing brain at times correlated with later aspects of neuronal differentiation. In some regions of the CNS Cabin1 expression overlaps with regions that also express proteins known to interact with Cabin1: MEF2 and/or calcineurin. We suggest that Cabin1 could act as a regulator of MEF2 and calcineurin activity in the developing nervous system, given their roles in neuronal differentiation and synaptic refinement.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neuronas/fisiología , Proteínas Represoras/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Proteínas Adaptadoras Transductoras de Señales/clasificación , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Calcineurina/genética , Calcineurina/metabolismo , Sistema Nervioso Central/anatomía & histología , Sistema Nervioso Central/embriología , Sistema Nervioso Central/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular , Factores de Transcripción MEF2 , Ratones , Datos de Secuencia Molecular , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Neuronas/citología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Filogenia , Proteínas Represoras/genética , Alineación de Secuencia , Distribución Tisular , Pez Cebra/anatomía & histología , Pez Cebra/genética , Proteínas de Pez Cebra/clasificación , Proteínas de Pez Cebra/genética
12.
Dev Dyn ; 239(2): 482-95, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20034105

RESUMEN

Mammals and fish differ in their ability to express axon growth-associated genes in response to CNS injury, which contributes to the differences in their ability for CNS regeneration. Previously we demonstrated that for the axon growth-associated gene, gap43, regions of the rat promoter that are sufficient to promote reporter gene expression in the developing zebrafish nervous system are not sufficient to promote expression in regenerating retinal ganglion cells in zebrafish. Recently, we identified a 3.6-kb gap43 promoter fragment from the pufferfish, Takifugu rubripes (fugu), that can promote reporter gene expression during both development and regeneration. Using promoter deletion analysis, we have found regions of the 3.6-kb fugu gap43 promoter that are necessary for expression in regenerating, but not developing, retinal ganglion cells. Within the 3.6-kb promoter, we have identified elements that are highly conserved among fish, as well as elements conserved among fish, mammals, and birds.


Asunto(s)
Proteína GAP-43/metabolismo , Regeneración , Células Ganglionares de la Retina/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Secuencia Conservada , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Retina/crecimiento & desarrollo , Transgenes , Pez Cebra
13.
Zebrafish ; 6(2): 187-99, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19250030

RESUMEN

In an effort to engage students in original research while teaching them basic molecular biology skills, we have designed a course for upper level undergraduate students and beginning graduate students that employs in situ hybridization in whole-mount zebrafish embryos to explore the concept of differential gene regulation. The course was taught in a workshop format during a break between the normal fall and spring semesters, which allowed students to immerse themselves in the concepts and techniques full time over a 13-day period. Overall, the course was successful in exposing students to a variety of techniques in the context of an ongoing research project in our laboratory, which provided beneficial outcomes for students and instructors alike. Here we provide a detailed account of the course organization and preparation, as well as an analysis of learning outcomes achieved by the students.


Asunto(s)
Regulación de la Expresión Génica , Biología Molecular/educación , Pez Cebra/genética , Animales , Técnicas de Laboratorio Clínico , Universidades , Pez Cebra/embriología
14.
Gene Expr Patterns ; 8(6): 382-388, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18599366

RESUMEN

Unlike mammals, fish have the capacity for functional adult CNS regeneration, which is due, in part, to their ability to express axon growth-related genes in response to nerve injury. One such axon growth-associated gene is gap43, which is expressed during periods of developmental and regenerative axon growth, but is not expressed in CNS neurons that do not regenerate in adult mammals. We previously demonstrated that cis-regulatory elements of gap43 that are sufficient for developmental expression are not sufficient for regenerative expression in the zebrafish. Here we have identified a 3.6kb genomic sequence from Fugu rubripes that can promote reporter gene expression in the nervous system during both development and regeneration in zebrafish. This compact sequence is advantageous for functional dissection of regions important for axon growth-associated gene expression during development and/or regeneration. In addition, this sequence will also be useful for targeting gene expression to neurons during periods of growth and plasticity.


Asunto(s)
Axones/fisiología , Proteínas de Peces/genética , Proteína GAP-43/genética , Regeneración Nerviosa/genética , Sistema Nervioso/embriología , Neuronas/metabolismo , Takifugu/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Elementos de Facilitación Genéticos , Evolución Molecular , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Proteína GAP-43/química , Proteína GAP-43/metabolismo , Expresión Génica , Genoma , Datos de Secuencia Molecular , Sistema Nervioso/metabolismo , Regiones Promotoras Genéticas , Retina/embriología , Retina/fisiología , Homología de Secuencia de Aminoácido , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
15.
Mar Biotechnol (NY) ; 10(6): 750-7, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18537037

RESUMEN

It has been proposed that transgenic zebrafish could be designed to detect low levels of chemical contaminants that cause oxidative stress in aquatic environments, such as heavy metals or pesticides. In this paper, we describe such a transgenic zebrafish that produces a luciferase-green fluorescent protein (LUC-GFP) fusion protein under conditions of oxidative stress. The reporter gene expression is under the regulation of the electrophile responsive element (EPRE), which activates gene expression in response to oxidative stressors. The GFP component of this fusion protein allows us to visually detect reporter gene activity in live animals to determine if activity is localized to a particular tissue. The luciferase component is capable of returning a quantitative assessment of reporter gene activity that allows us to determine if reporter gene activity is directly correlated to the concentration of the chemical inducer. We have tested this reporter construct in both transient and stable transgenic fish after exposure to a range of HgCl(2) concentrations. GFP expression from the EPRE-LUC-GFP construct was inducible in transient assays but was below the limit of detection in stable lines. In contrast, we observed inducible luciferase activity in both transient assays and stable lines treated with HgCl(2). We conclude that the EPRE is capable of driving reporter gene expression in a whole animal assay under conditions of oxidative stress. Furthermore, expression was induced at HgCl(2) concentrations that do not result in obvious morphological defects, making this approach useful for the detection of low levels of oxidative contaminants in aquatic environments.


Asunto(s)
Monitoreo del Ambiente , Genes Reporteros , Cloruro de Mercurio/toxicidad , Contaminantes Químicos del Agua/metabolismo , Pez Cebra/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Estrés Oxidativo , Elementos de Respuesta , Transgenes , Pez Cebra/metabolismo
17.
Dev Biol ; 256(1): 1-17, 2003 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-12654288

RESUMEN

The recent explosion of transgenic zebrafish lines in the literature demonstrates the value of this model system for detailed in vivo analysis of gene regulation and morphogenetic movements. The optical clarity and rapid early development of zebrafish provides the ability to follow these events as they occur in live, developing embryos. This article will review the development of transgenic technology in zebrafish as well as the current and future uses of transgenic zebrafish to explore the dynamic environment of the developing vertebrate embryo.


Asunto(s)
Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Biología Evolutiva/historia , Biología Evolutiva/tendencias , Femenino , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen/historia , Marcación de Gen/tendencias , Ingeniería Genética/historia , Ingeniería Genética/tendencias , Historia del Siglo XX , Historia del Siglo XXI , Masculino , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA