Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 26(12): 349, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33236232

RESUMEN

We have obtained analytically the bound state solutions for the non-relativistic Schrodinger equation for the Eckart plus inversely quadratic Yukawa potential (EIQYP) using the parametric Nikiforov-Uvarov (NU) method. In order to validate our approximation, the bound state energies were computed and predicted for some selected diatomic molecules at different adjustable screening parameters from the available spectroscopic model parameters. The fact-finding obtained are in agreement with previously reported results available in literature. Furthermore, the graphs of the effective potential against inter-nuclear distance for low and high values of the screening parameters were reported. From our graphs, we observed that the approximation is best fit for very low values of the screening parameter α ≪ 1.

2.
Heliyon ; 6(12): e05783, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33385089

RESUMEN

This study explains the vibration and interaction of p-xylene and effect of three elements (fluorine, chlorine and bromine) of the halogen family substitution on it. Basic chemistry of four, compounds p-xylene (PX); 3,6-diflouro-p-xylene (DFPX); 3,6-dichloro-p-xylene (DCPX) and 3,6-dibromo-p-xylene (DBPX) has been explained extensively using theoretical approach. Vibrational energy distribution analysis (VEDA) software was used to study the potential energy distribution (PED) analysis, bond length, bond angles and dihedral angles of PX, DFPX, DCPX, DBPX after optimization with GAUSSIAN 09 software. The trend in chemical reactivity and stability of the studied compounds was observed to show increasing stability and decreasing reactivity moving from DBPX, DCPX, DFPX to PX and this was obtained from the calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) values. Our results show that PX is the best electron donor (best nucleophile) while DBPX is the best electron acceptor (the best electrophile). We also observed that the substituted halogen increases the value of the bond angles but the effect is reduced as the size of the halogen increases. The maximum intensity and the frequency value for the maximum intensity of the different compounds was determined using the VEDA 04 software. From our natural bond orbital (NBO) 7.0 program analysis, the studied compounds are said to show biological activities as well as the intramolecular hyperconjugative interactions responsible for stabilizing the compounds. The NBO results also revealed that the non-bonding interaction existing between the lone pair electron on the halogen atoms and the aromatic ring increases the stability of the halogen substituted para-xylene molecules. Multiwfn: A Multifunctional Wavefunction Analyzer was used for the spectroscopic plots.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA