RESUMEN
This study was performed to evaluate breast muscle development in chicken genotypes divergently selected for muscularity. In the first experiment, 2 commercial broiler lines (a high breast yield, HBY, and a normal breast yield broiler strain-cross, NBY) and a Leghorn line were grown up to 35 d to evaluate BW, breast weight, and breast yield. At 7 and 21 d of age, pectoralis muscle was used to estimate myofiber density (MFD, number of myofibers per mm2) and total apparent myofiber number (MFN). In the second experiment, the ontogeny of myostatin was determined from broiler- and Leghorn-type chick embryos, at embryonic days 1 to 20 (E1 to E20), using reverse transcription (RT)-PCR. As expected, the Leghorn line had lower BW, breast weight, and breast yield than broiler lines. The HBY line showed higher breast yield at all ages evaluated, but lower BW at 21 and 35 d than the NBY line. The Leghorn line had 45% higher MFD than broilers, which indicates an increased cross-sectional area of the myofibers in broiler lines. No MFD difference was observed between the broiler strains (P > 0.05). The myofiber number of broilers was more than twice that of Leghorns and HBY had 10% higher MFN than the NBY line. Myofiber number was correlated to BW (r = 0.58), breast weight (r = 0.58), and breast yield (r = 0.69). Conversely, MFD showed negative correlation with BW, breast weight, and breast yield (r = -0.85, -0.83, and -0.88, respectively). No effect of genotype or interaction between genotype and embryonic age was observed for myostatin expression. This study showed that broilers have higher MFN in the breast muscles than Leghorn-type chickens, and that high breast yield of broiler strains may be due to increased MFN. Higher muscularity of broilers, as compared with Leghorns, was not attributed to lower expression of myostatin during embryonic development.