Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 20(17): 11564-11576, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29340392

RESUMEN

We present two approaches to enhance the photoluminescence quantum yield (PLQY) of surface-anchored metal-organic frameworks (SURMOFs). In the first approach we fabricate SURMOFs from a mix of an emissive linker with an optically-inert linker of equivalent length, diluting the emissive linker while maintaining the SURMOF structure. This approach enhances the internal PLQY. However, the increase in internal PLQY is achieved at the expense of a drastic reduction in optical absorption, thus the external PLQY remains low. To overcome this limitation, a second approach is explored wherein energy-accepting guest chromophores are infiltrated into the framework of the active linker. At the correct acceptor concentration, an internal PLQY of 52% - three times higher than the previous approach - is achieved. Additionally, the absorption remains strong leading to an external PLQY of 8%, an order of magnitude better than the previous approach. Using this strategy, we demonstrate that SURMOFs can achieve PLQYs similar to their precursor chromophores in solution. This is of relevance to SURMOFs as emitter layers in general, and we examine the optimized emitter layer as part of a photon upconversion (UC) SURMOF heterostructure. Surprisingly, the same PLQY is not observed after triplet-triplet annihilation in the UC heterostructure as after its normal photoexcitation (although the UC layers exhibit low thresholds consistent with those reported in our previous work). We discuss the potential bottlenecks in energy transport that could lead to this unexpected reduction in PLQY after excitation via triplet-triplet annihilation, and how future design of SURMOF UC multilayers could overcome these limitations.

2.
Rev Sci Instrum ; 78(7): 074903, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17672786

RESUMEN

A quartz crystal microbalance (QCM) is described, which is based on a torsional resonator, rather than a conventional thickness-shear resonator. Typical applications are measurements of film thickness in the coating industry and monitoring of biofouling. The torsional QCM is about a factor of 100 less sensitive than the conventional QCM. On the other hand, it can probe film thicknesses in the range of hundreds of microns, which is impossible with the conventional QCM due to viscoelastic artifacts. Data acquisition and data analysis proceed in analogy to the conventional QCM. An indicator of the material's softness can be extracted from the bandwidth of the resonance. Within the small-load approximation, the frequency shift is independent of whether the sample is applied to the face or to the side of the cylinder. Details of the geometry matter if the viscoelastic properties of the sample are of interest.


Asunto(s)
Acústica/instrumentación , Diseño Asistido por Computadora , Electroquímica/instrumentación , Modelos Teóricos , Cuarzo/química , Transductores , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Miniaturización , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA