Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Senses ; 38(1): 77-89, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23125347

RESUMEN

Olfactory sensory deprivation during development has been shown to induce significant alterations in the neurophysiology of olfactory receptor neurons (ORNs), the primary sensory inputs to the brain's olfactory bulb. Deprivation has also been shown to alter the neurochemistry of the adult olfactory system, but the physiological consequences of these changes are poorly understood. Here we used in vivo synaptopHluorin (spH) imaging to visualize odorant-evoked neurotransmitter release from ORNs in adult transgenic mice that underwent 4 weeks of unilateral olfactory deprivation. Deprivation reduced odorant-evoked spH signals compared with sham-occluded mice. Unexpectedly, this reduction was equivalent between ORNs on the open and plugged sides. Changes in odorant selectivity of glomerular subpopulations of ORNs were also observed, but only in ORNs on the open side of deprived mice. These results suggest that naris occlusion in adult mice produces substantial changes in primary olfactory processing which may reflect not only the decrease in olfactory stimulation on the occluded side but also the alteration of response properties on the intact side. We also observed a modest effect of true sham occlusions that included noseplug insertion and removal, suggesting that conventional noseplug techniques may have physiological effects independent of deprivation per se and thus require more careful controls than has been previously appreciated.


Asunto(s)
Bulbo Olfatorio/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Receptores Odorantes/metabolismo , Privación Sensorial/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Bulbo Olfatorio/anatomía & histología , Neuronas Receptoras Olfatorias/anatomía & histología
2.
Neurotoxicology ; 33(5): 996-1004, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22542936

RESUMEN

Chronic exposure to aerosolized manganese induces a neurological disorder that includes extrapyramidal motor symptoms and cognitive impairment. Inhaled manganese can bypass the blood-brain barrier and reach the central nervous system by transport down the olfactory nerve to the brain's olfactory bulb. However, the mechanism by which Mn disrupts neural function remains unclear. Here we used optical imaging techniques to visualize exocytosis in olfactory nerve terminals in vivo in the mouse olfactory bulb. Acute Mn exposure via intranasal instillation of 2-200 µg MnCl(2) solution caused a dose-dependent reduction in odorant-evoked neurotransmitter release, with significant effects at as little as 2 µg MnCl(2) and a 90% reduction compared to vehicle controls with a 200 µg exposure. This reduction was also observed in response to direct electrical stimulation of the olfactory nerve layer in the olfactory bulb, demonstrating that Mn's action is occurring centrally, not peripherally. This is the first direct evidence that Mn intoxication can disrupt neurotransmitter release, and is consistent with previous work suggesting that chronic Mn exposure limits amphetamine-induced dopamine increases in the basal ganglia despite normal levels of dopamine synthesis (Guilarte et al., J Neurochem 2008). The commonality of Mn's action between glutamatergic neurons in the olfactory bulb and dopaminergic neurons in the basal ganglia suggests that a disruption of neurotransmitter release may be a general consequence wherever Mn accumulates in the brain and could underlie its pleiotropic effects.


Asunto(s)
Manganeso/toxicidad , Neurotransmisores/metabolismo , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/metabolismo , Transmisión Sináptica/efectos de los fármacos , Administración Intranasal , Animales , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Odorantes , Bulbo Olfatorio/patología , Proteína Marcadora Olfativa/genética , Proteína Marcadora Olfativa/metabolismo , Nervio Olfatorio/fisiología , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/metabolismo , Imagen Óptica/métodos , Estadísticas no Paramétricas , Tirosina 3-Monooxigenasa/metabolismo
3.
Toxicol Sci ; 126(2): 534-44, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22287023

RESUMEN

Intranasal exposure to the heavy metal cadmium has been linked to olfactory dysfunction and neurotoxicity. Here, we combine optical imaging of in vivo neurophysiology, genetically defined anatomical tract tracing, mass spectrometry, and behavioral psychophysical methods to evaluate the persistent harmful effects of acute intranasal exposure to cadmium in a mouse model and to investigate the functional consequences of sensory rehabilitation training. We find that an acute intranasal instillation of cadmium chloride leads to an accumulation of cadmium in the brain's olfactory bulb that persists for at least 4 weeks. This is accompanied by persistent severe pathophysiology of the olfactory nerve, a gradual reduction in axonal projections from the olfactory epithelium, and complete impairment on an olfactory detection task. Remarkably, 2 weeks of odorant-guided operant conditioning training proved sufficient to restore olfactory detection performance to control levels in cadmium-exposed mice. Optical imaging from rehabilitated mice showed that this training did not cause any detectable restoration of olfactory nerve function, suggesting that the recovery of function was mediated by central neuroplasticity in which the brain learned to interpret the degraded sensory input. These data demonstrate that sensory learning can mask even severe damage from neurotoxicants and suggest that explicit sensory training may be useful in rehabilitation of olfactory dysfunction.


Asunto(s)
Cadmio/toxicidad , Sistema Nervioso/efectos de los fármacos , Vías Olfatorias/efectos de los fármacos , Animales , Femenino , Masculino , Espectrometría de Masas , Ratones , Vías Olfatorias/fisiopatología
4.
Neurotoxicology ; 32(4): 441-9, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21443902

RESUMEN

Intranasal exposure to cadmium has been related to olfactory dysfunction in humans and to nasal epithelial damage and altered odorant-guided behavior in rodent models. The pathophysiology underlying these deficits has not been fully elucidated. Here we use optical imaging techniques to visualize odorant-evoked neurotransmitter release from the olfactory nerve into the brain's olfactory bulbs in vivo in mice. Intranasal cadmium chloride instillations reduced this sensory activity by up to 91% in a dose-dependent manner. In the olfactory bulbs, afferents from the olfactory epithelium could be quantified by their expression of a genetically encoded fluorescent marker for olfactory marker protein. At the highest dose tested, cadmium exposure reduced the density of these projections by 20%. In a behavioral psychophysical task, mice were trained to sample from an odor port and make a response when they detected an odorant against a background of room air. After intranasal cadmium exposure, mice were unable to detect the target odor. These experiments serve as proof of concept for a new approach to the study of the neural effects of inhaled toxicants. The use of in vivo functional imaging of the neuronal populations exposed to the toxicant permits the direct observation of primary pathophysiology. In this study optical imaging revealed significant reductions in odorant-evoked release from the olfactory nerve at a cadmium chloride dose two orders of magnitude less than that required to induce morphological changes in the nerve in the same animals, demonstrating that it is a more sensitive technique for assessing the consequences of intranasal neurotoxicant exposure. This approach is potentially useful in exploring the effects of any putative neurotoxicant that can be delivered intranasally.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cloruro de Cadmio/toxicidad , Bulbo Olfatorio/efectos de los fármacos , Mucosa Olfatoria/efectos de los fármacos , Nervio Olfatorio/efectos de los fármacos , Olfato/efectos de los fármacos , Administración Intranasal , Animales , Cloruro de Cadmio/administración & dosificación , Relación Dosis-Respuesta a Droga , Femenino , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Mediciones Luminiscentes , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/patología , Bulbo Olfatorio/fisiopatología , Proteína Marcadora Olfativa/genética , Mucosa Olfatoria/metabolismo , Mucosa Olfatoria/patología , Mucosa Olfatoria/fisiopatología , Nervio Olfatorio/metabolismo , Nervio Olfatorio/patología , Nervio Olfatorio/fisiopatología , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Umbral Sensorial/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA