RESUMEN
COVID-19 is a multisystemic disease caused by the SARS-CoV-2 airborne virus, a member of the Coronaviridae family. It has a positive sense single-stranded RNA genome and encodes two non-structural proteins through viral cysteine-proteases processing. Blocking this step is crucial to control virus replication. In this work, we reported the synthesis of 23 statine-based peptidomimetics to determine their ability to inhibit the main protease (Mpro) activity of SARS-CoV-2. Among the 23 peptidomimetics, 15 compounds effectively inhibited Mpro activity by 50% or more, while three compounds (7d, 8e, and 9g) exhibited maximum inhibition above 70% and IC50 < 1 µM. Compounds 7d, 8e, and 9g inhibited roughly 80% of SARS-CoV-2 replication and proved no cytotoxicity. Molecular docking simulations show putative hydrogen bond and hydrophobic interactions between specific amino acids and these inhibitors. Molecular dynamics simulations further confirmed the stability and persisting interactions in Mpro's subsites, exhibiting favorable free energy binding (ΔGbind) values. These findings suggest the statine-based peptidomimetics as potential therapeutic agents against SARS-CoV-2 by targeting Mpro.
Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , Peptidomiméticos , Humanos , SARS-CoV-2/metabolismo , Peptidomiméticos/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/química , Aminoácidos , Simulación de Dinámica Molecular , Antivirales/farmacología , Antivirales/químicaRESUMEN
Traditional medicine shows several treatment protocols for COVID-19 based on natural products, revealing its potential as a possible source of anti-SARS-CoV-2 agents. Ampelozizyphus amazonicus is popularly used in the Brazilian Amazon as a fortifier and tonic, and recently, it has been reported to relieve COVID-19 symptoms. This work aimed to investigate the antiviral potential of A. amazonicus, focusing on the inhibition of spike and ACE2 receptor interaction, a key step in successful infection. Although saponins are the major compounds of this plant and often reported as its active principles, a polyphenol-rich extract was the best inhibitor of the spike and ACE2 interaction. Chemical characterization of A. amazonicus bark extracts by LC-DAD-APCI-MS/MS before and after clean-up steps for polyphenol removal showed that the latter play an essential role in maintaining this activity. The effects of the extracts on viral replication were also assessed, and all samples (aqueous and ethanol extracts) demonstrated in vitro activity, inhibiting viral titers in the supernatant of Calu-3 cells after 24 hpi. By acting both in the SARS-CoV-2 cell entry process and its replication, A. amazonicus bark extracts stand out as a multitarget agent, highlighting the species as a promising candidate in the development of anti-SARS-CoV-2 drugs.
Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Corteza de la Planta , Espectrometría de Masas en Tándem , Antivirales/farmacología , Unión ProteicaRESUMEN
Abstract Cardiac hypertrophy and dysfunction are a significant complication of chronic Chagas disease, with heart failure, stroke, and sudden death related to disease progression. Thus, understanding the signaling pathways involved in the chagasic cardiac hypertrophy may provide potential targets for pharmacological therapy. Herein, we investigated the implication of focal adhesion kinase (FAK) signaling pathway in triggering hypertrophic phenotype during acute and chronic T. cruzi infection. C57BL/6 mice infected with T. cruzi (Brazil strain) were evaluated for electrocardiographic (ECG) changes, plasma levels of endothelin-1 (ET-1) and activation of signaling pathways involved in cardiac hypertrophy, including FAK and ERK1/2, as well as expression of hypertrophy marker and components of the extracellular matrix in the different stages of T. cruzi infection (60-210 dpi). Heart dysfunction, evidenced by prolonged PR interval and decrease in heart rates in ECG tracing, was associated with high plasma ET-1 level, extracellular matrix remodeling and FAK signaling activation. Upregulation of both FAK tyrosine 397 (FAK-Y397) and serine 910 (FAK-S910) residues phosphorylation as well as ERK1/2 activation, lead to an enhancement of atrial natriuretic peptide gene expression in chronic infection. Our findings highlight FAK-ERK1/2 signaling as a regulator of cardiac hypertrophy in Trypanosoma cruzi infection. Both mechanical stress, induced by cardiac extracellular matrix (ECM) augment and cardiac overload, and ET-1 stimuli orchestrated FAK signaling activation with subsequent activation of the fetal cardiac gene program in the chronic phase of infection, highlighting FAK as an attractive target for Chagas disease therapy.
Asunto(s)
Animales , Ratones , Trypanosoma cruzi , Cardiomegalia , Fosforilación , Brasil , Transducción de Señal , Ratones Endogámicos C57BLRESUMEN
Cardiac hypertrophy and dysfunction are a significant complication of chronic Chagas disease, with heart failure, stroke, and sudden death related to disease progression. Thus, understanding the signaling pathways involved in the chagasic cardiac hypertrophy may provide potential targets for pharmacological therapy. Herein, we investigated the implication of focal adhesion kinase (FAK) signaling pathway in triggering hypertrophic phenotype during acute and chronic T. cruzi infection. C57BL/6 mice infected with T. cruzi (Brazil strain) were evaluated for electrocardiographic (ECG) changes, plasma levels of endothelin-1 (ET-1) and activation of signaling pathways involved in cardiac hypertrophy, including FAK and ERK1/2, as well as expression of hypertrophy marker and components of the extracellular matrix in the different stages of T. cruzi infection (60-210 dpi). Heart dysfunction, evidenced by prolonged PR interval and decrease in heart rates in ECG tracing, was associated with high plasma ET-1 level, extracellular matrix remodeling and FAK signaling activation. Upregulation of both FAK tyrosine 397 (FAK-Y397) and serine 910 (FAK-S910) residues phosphorylation as well as ERK1/2 activation, lead to an enhancement of atrial natriuretic peptide gene expression in chronic infection. Our findings highlight FAK-ERK1/2 signaling as a regulator of cardiac hypertrophy in Trypanosoma cruzi infection. Both mechanical stress, induced by cardiac extracellular matrix (ECM) augment and cardiac overload, and ET-1 stimuli orchestrated FAK signaling activation with subsequent activation of the fetal cardiac gene program in the chronic phase of infection, highlighting FAK as an attractive target for Chagas disease therapy.
Asunto(s)
Cardiomegalia , Trypanosoma cruzi , Animales , Brasil , Ratones , Ratones Endogámicos C57BL , Fosforilación , Transducción de SeñalRESUMEN
The activation of signaling pathways involving protein tyrosine kinases (PTKs) has been demonstrated during Trypanosoma cruzi invasion. Herein, we describe the participation of FAK/Src in the invasion of cardiomyocytes by T. cruzi. The treatment of cardiomyocytes with genistein, a PTK inhibitor, significantly reduced T. cruzi invasion. Also, PP1, a potent Src-family protein inhibitor, and PF573228, a specific FAK inhibitor, also inhibited T. cruzi entry; maximal inhibition was achieved at concentrations of 25µM PP1 (53% inhibition) and 40µM PF573228 (50% inhibition). The suppression of FAK expression in siRNA-treated cells and tetracycline-uninduced Tet-FAK(WT)-46 cells significantly reduced T. cruzi invasion. The entry of T. cruzi is accompanied by changes in FAK and c-Src expression and phosphorylation. An enhancement of FAK activation occurs during the initial stages of T. cruzi-cardiomyocyte interaction (30 and 60min), with a concomitant increase in the level of c-Src expression and phosphorylation, suggesting that FAK/Src act as an integrated signaling pathway that coordinates parasite entry. These data provide novel insights into the signaling pathways that are involved in cardiomyocyte invasion by T. cruzi. A better understanding of the signal transduction networks involved in T. cruzi invasion may contribute to the development of more effective therapies for the treatment of Chagas' disease.