Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 13(33): 7788-7796, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35973202

RESUMEN

Bright, persistent, room-temperature phosphorescence (RTP) at long wavelengths is crucial for high-resolution imaging in the absence of in vivo autofluorescence. However, efficient long-wavelength RTP is difficult. Here, enhanced red RTP based on a unique mechanism was observed from deuterated dibenzo[g.p]chrysenes substituted with a phenoxazine. The yield was 16%, with an average lifetime of 1.8 s. An orthogonal dihedral angle between the dibenzo[g.p]chrysene and the phenoxazine in the lowest excited singlet state allowed a forbidden fluorescence to increase triplet generation. When the dihedral angle changed, disengagement of the forbidden fluorescence from the excited singlet state occurred, and the lowest triplet excited state had a facilitated phosphorescence rate without increasing its nonradiative transition rate. The facilitated phosphorescence rate as well as the large triplet yield led to the enhanced red RTP.


Asunto(s)
Electrónica , Luminiscencia , Fluorescencia , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA