Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Int J Food Microbiol ; 238: 233-240, 2016 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-27672730

RESUMEN

During bread-making processes, yeast cells are exposed to baking-associated stresses such as freeze-thaw, air-drying, and high-sucrose concentrations. Previously, we reported that self-cloning diploid baker's yeast strains that accumulate proline retained higher-level fermentation abilities in both frozen and sweet doughs than the wild-type strain. Although self-cloning yeasts do not have to be treated as genetically modified yeasts, the conventional methods for breeding baker's yeasts are more acceptable to consumers than the use of self-cloning yeasts. In this study, we isolated mutants resistant to the proline analogue azetidine-2-carboxylate (AZC) derived from diploid baker's yeast of Saccharomyces cerevisiae. Some of the mutants accumulated a greater amount of intracellular proline, and among them, 5 mutants showed higher cell viability than that observed in the parent wild-type strain under freezing or high-sucrose stress conditions. Two of them carried novel mutations in the PRO1 gene encoding the Pro247Ser or Glu415Lys variant of γ-glutamyl kinase (GK), which is a key enzyme in proline biosynthesis in S. cerevisiae. Interestingly, we found that these mutations resulted in AZC resistance of yeast cells and desensitization to proline feedback inhibition of GK, leading to intracellular proline accumulation. Moreover, baker's yeast cells expressing the PRO1P247S and PRO1E415K gene were more tolerant to freezing stress than cells expressing the wild-type PRO1 gene. The approach described here could be a practical method for the breeding of proline-accumulating baker's yeasts with higher tolerance to baking-associated stresses.


Asunto(s)
Prolina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Pan/microbiología , Culinaria , Fermentación , Congelación , Calor , Mutación , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sacarosa/metabolismo
2.
J Gen Appl Microbiol ; 62(3): 132-9, 2016 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-27246536

RESUMEN

In the budding yeast Saccharomyces cerevisiae, the AVT genes (AVT1-7), which encode vacuolar amino acid transporters belonging to the amino acid vacuolar transport (AVT)-family, were significantly upregulated in response to exogenous proline. To reveal a novel role of the Avt proteins in proline homeostasis, we analyzed the effects of deletion or overexpression of the AVT genes on the subcellular distribution of amino acids after the addition of proline to the cells grown in minimal medium. Among seven AVT gene disruptants, avt1Δ and avt7Δ showed the lowest ratios of vacuolar proline. Consistently, overexpression of the AVT1 gene specifically enhanced the vacuolar localization of proline. Since double disruption of the AVT1 and AVT7 genes did not completely abrogate vacuolar accumulation of proline, it is presumed that Avt1 has a dominant role, and Avt7 and other Avt proteins have redundant functions, in the localization of proline into the vacuolar lumen. In contrast, deletion of the AVT3 gene increased vacuolar proline, although the highly expressed AVT3 gene interfered with the accumulation of proline in the vacuole. Based on these results, it appears that Avt3 is the major protein involved in the export of proline from the vacuole. We also observed vacuolar membrane localization of GFP-fused Avt1, Avt3, and Avt7 proteins. Taken together, our data suggest that the AVT genes induced by exogenous proline are involved in the bidirectional transport of proline across the vacuolar membrane.


Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Prolina/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Aminoácidos/metabolismo , Transporte Biológico/genética , Medios de Cultivo/química , Eliminación de Gen , Genes Fúngicos , Homeostasis , Prolina/farmacología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Activación Transcripcional , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA