Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(5): 1861-1871, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38277502

RESUMEN

Cow milk contains essential nutrients for humans, and its bulk composition is usually analyzed using Fourier transform infrared spectroscopy. The higher sensitivity of nuclear magnetic resonance (NMR) spectroscopy can augment the extractible qualitative and quantitative information from milk to nearly 60 compounds, enabling us to monitor the health of cows and milk quality. Proton (1H) NMR spectroscopy produces complex spectra that require expert knowledge for identifying and quantifying metabolites. Therefore, an efficient and reproducible methodology is required to transform complex milk 1H NMR spectra into annotated and quantified milk metabolome data. In this study, standard operating procedures for screening the milk metabolome using 1H NMR spectra are developed. A chemical shift library of 63 milk metabolites was established and implemented in the open-access Signature Mapping (SigMa) software. SigMa is a spectral analysis tool that transforms 1H NMR spectra into a quantitative metabolite table. The applicability of the proposed methodology to whole milk, skim milk, and ultrafiltered milk is demonstrated, and the method is tested on ultrafiltered colostrum samples from dairy cows (n = 88) to evaluate whether metabolic changes in colostrum may reflect the metabolic status of cows.


Asunto(s)
Líquidos Corporales , Leche , Humanos , Femenino , Embarazo , Bovinos , Animales , Leche/química , Calostro , Espectroscopía de Protones por Resonancia Magnética/métodos , Protones , Bibliotecas de Moléculas Pequeñas/análisis , Lactancia
2.
Food Chem ; 420: 136060, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37086610

RESUMEN

Lactose powder production from whey permeate generates various side-streams. Molecular profiling of these side-streams and lactose powder can help to detect minor compounds affecting lactose crystallization, lactose powder properties and document the composition of the underutilized side-streams. In this study, whey permeate, lactose powder and intermediate streams from trial lactose productions were analyzed using gas chromatography-mass spectrometry (GC-MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy. In total, 110 compounds were identified and 49 were quantified. Linking the molecular profiles to in-process steps revealed differential compositional attenuation by the unit operations. Small molecules (e.g. methanol) and a few larger molecules (e.g. fatty acids) permeated reverse osmosis membrane, while twenty-three compounds (e.g. hydroxypyruvic acid, malonic acid, gluconic acid and ribonic acid) co-crystallized with lactose and ended up in lactose power. These results help to better understand and control lactose powder production and highlights possibilities to develop new food ingredients.


Asunto(s)
Lactosa , Suero Lácteo , Suero Lácteo/química , Lactosa/química , Polvos/química , Proteína de Suero de Leche/química , Cristalización
3.
Food Chem ; 405(Pt A): 134716, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36351316

RESUMEN

The NPN compounds from dairy processing side-streams are a promising source for new products. In this study, the NPN profile of lactose production samples was screened using GC-MS and 1H NMR spectroscopy. These analytical platforms allowed the identification of 35 NPN compounds including, amino acids and derivatives, amino alcohols, organic acids, and other classes. Quantification of the NPN compounds revealed their attenuation by unit operations during a trial lactose production. Urea, ammonia, glycerophosphocholine, creatine, creatinine, orotic acid and choline were the most dominant compounds. Mother liquor concentrate had the highest concentration of NPN, whereas lactose powder had substantial relative amounts of N-acetylglucosamine, phosphocholine and orotic acid. The NPN compounds added up to 57-99% of the total nitrogen, depending on the sample type. The highest nitrogen recovery was found for the reverse osmosis retentate, mother liquid concentrate, wash water and reverse osmosis permeate, whereas the lowest was found for lactose powder.


Asunto(s)
Lactosa , Suero Lácteo , Animales , Suero Lácteo/química , Lactosa/metabolismo , Nitrógeno/análisis , Leche/química , Ríos , Polvos/análisis , Ácido Orótico/análisis , Proteína de Suero de Leche/análisis , Compuestos de Nitrógeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA