Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Musculoskelet Sci Pract ; 73: 103153, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39096535

RESUMEN

BACKGROUND: Joint position sense is the ability to detect body segment position in space and is commonly used to represent proprioceptive performance. The isokinetic dynamometer is frequently used to evaluate elbow joint position sense during active and passive reproduction tasks with various testing protocols. However, few studies have reported the performance of joint position sense under different testing conditions. OBJECTIVE: To compare elbow joint position sense between active and passive reproduction tasks under different matching speeds and reference targets. DESIGN: A cross-sectional study. METHODS: Twenty participants without a history of upper-extremity surgery or neuromuscular diseases that affect the joint position sense of the elbow. Active and passive ipsilateral matching tasks were performed at four movement speeds (0.5°/s, 1°/s, 2°/s, and 4°/s) and three reference targets (elbow flexion at 0°-15°, 45°-60°, and 75°-90°), using an isokinetic dynamometer. The absolute and variable errors of each condition were calculated for comparison. RESULTS: In active matching task with elbow flexion of 0°-15°, the absolute error at 0.5°/s was significantly larger than that at 2°/s and 4°/s, while the variable error at 1°/s was significantly larger than that at 2°/s. However, no differences were found at elbow flexion angles of 45°-60° and 75°-90°. Larger absolute errors were found at 4°/s with three testing angles in passive matching task. CONCLUSIONS: This study compared the joint position sense errors under various testing conditions in the active and passive reproduction tasks. The movement speeds and target position effects should be considered during evaluation.


Asunto(s)
Articulación del Codo , Dinamómetro de Fuerza Muscular , Propiocepción , Rango del Movimiento Articular , Humanos , Masculino , Articulación del Codo/fisiología , Estudios Transversales , Femenino , Propiocepción/fisiología , Rango del Movimiento Articular/fisiología , Adulto , Adulto Joven , Movimiento/fisiología
2.
Bioengineering (Basel) ; 11(6)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38927828

RESUMEN

Bone drilling is a common procedure used to create pilot holes for inserting screws to secure implants for fracture fixation. However, this process can increase bone temperature and the excessive heat can lead to cell death and thermal osteonecrosis, potentially causing early fixation failure or complications. We applied a three-dimensional dynamic elastoplastic finite element model to evaluate the propagation and distribution of heat during bone drilling and assess the thermally affected zone (TAZ) that may lead to thermal necrosis. This model investigates the parameters influencing bone temperature during bone drilling, including drill diameter, rotational speed, feed force, and predrilled hole. The results indicate that our FE model is sufficiently accurate in predicting the temperature rise effect during bone drilling. The maximum temperature decreases exponentially with radial distance. When the feed forces are 40 and 60 N, the maximum temperature does not exceed 45 °C. However, with feed forces of 10 and 20 N, both the maximum temperatures exceed 45 °C within a radial distance of 0.2 mm, indicating a high-risk zone for potential thermal osteonecrosis. With the two-stage drilling procedure, where a 2.5 mm pilot hole is predrilled, the maximum temperature can be reduced by 14 °C. This suggests that higher feed force and rotational speed and/or using a two-stage drilling process could mitigate bone temperature elevation and reduce the risk of thermal osteonecrosis during bone drilling.

3.
Life (Basel) ; 13(11)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-38004250

RESUMEN

The locking plate may provide improved fixation in osteoporotic bone; however, it has been reported to fail due to varus collapse or screw perforation of the articular surface, especially in osteoporotic bone with medial cortex comminution. Using bone graft as an intramedullary strut together with plate fixation may result in a stronger construct. However, the drawbacks of bone grafts include limited supply, high cost, and infection risk. PMMA (so-called bone cement) has been widely used for implant fixation due to its good mechanical properties, fabricability, and biocompatibility. The risk of donor-site infection and the drawbacks of allografting may be overcome by considering PMMA struts as alternatives to fibular grafts for humeral intramedullary grafting surgeries. However, the potential effects of intramedullary PMMA strut on the dynamic behaviour of osteoporotic humerus fractures remain unclear. This study aimed to investigate the influence of an intramedullary PMMA strut on the stability of unstable proximal humeral fractures in an osteoporotic synthetic model. Two fixation techniques, a locking plate alone (non-strut group) and the same fixation augmented with an intramedullary PMMA strut (with-strut group), were cyclically tested in 20 artificial humeral models. Axially cyclic testing was performed to 450 N for 10,000 cycles, intercyclic motion, cumulated fragment migration, and residual deformation of the constructs were determined at periodic cyclic intervals, and the groups were compared. Results showed that adding an intramedullary PMMA strut could decrease 1.6 times intercyclic motion, 2 times cumulated fracture gap migration, and 1.8 times residual deformation from non-strut fixation. During cycling, neither screw pull-out, cut-through, nor implant failure was observed in the strut-augmented group. We concluded that the plate-strut mechanism could enhance the cyclic stability of the fixation and minimize the residual displacement of the fragment in treating osteoporotic proximal humeral unstable fractures. The PMMA strut has the potential to substitute donor bone and serve as an intramedullary support when used in combination with locking plate fixation. The intramedullary support with bone cement can be considered a solution in the treatment of osteoporotic proximal humeral fractures, especially when there is medial comminution.

4.
Bioengineering (Basel) ; 10(9)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37760144

RESUMEN

Spinal fusion surgery leads to the restriction of mobility in the vertebral segments postoperatively, thereby causing stress to rise at the adjacent levels, resulting in early degeneration and a high risk of adjacent vertebral fractures. Thus, to address this issue, non-fusion surgery applies some pedicle screw-based dynamic stabilisation systems to provide stability and micromotion, thereby reducing stress in the fusion segments. Among these systems, the hybrid performance stabilisation system (HPSS) combines a rigid rod, transfer screw, and coupler design to offer a semi-rigid fixation method that preserves some mobility near the fusion site and reduces the adjacent segment compensatory effects. However, further research and confirmation are needed regarding the biomechanical effects of the dynamic coupler stiffness of the HPSS on the intrinsic degenerated adjacent segment. Therefore, this study utilised the finite element method to investigate the impact of the coupler stiffness of the HPSS on the mobility of the lumbar vertebral segments and the stress distribution in the intervertebral discs under flexion, extension, and lateral bending, as well as the clinical applicability of the HPSS on the discs with intrinsic moderate and severe degeneration at the adjacent level. The analytical results indicated that, regardless of the degree of disc degeneration, the use of a dynamic coupler stiffness of 57 N/mm in the HPSS may reduce the stress concentrations at the adjacent levels. However, for severely degenerated discs, the postoperative stress on the adjacent segments with the HPSS was still higher compared with that of the discs with moderate degeneration. We conclude that, when the discs had moderate degeneration, increasing the coupler stiffness led to a decrease in disc mobility. In the case of severe disc degeneration, the effect on disc mobility by coupler stiffness was less pronounced. Increasing the coupler stiffness ked to higher stress on intervertebral discs with moderate degeneration, while its effect on stress was less pronounced for discs with severe degeneration. It is recommended that patients with severe degeneration who undergo spinal dynamic stabilisation should remain mindful of the risk of accelerated adjacent segment degeneration.

5.
Med Biol Eng Comput ; 60(12): 3525-3538, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36229717

RESUMEN

A three-dimensional (3-D) electrothermal coupled finite element (FE) model was used to simulate and analyze the effects of the electrosurgical power-on setting on the temperature distribution and thermal damage in biological tissue during coagulation. The discussed parameters include the power-on-off durations, contact distance between the electrosurgical blade and tissue surface, and inclination angle of the blade during cutting. The results indicate that under the condition of a constant input electrical energy, the maximal temperature decreased when the power-on time was shortened and the power-off (pause) duration was increased. The two contact distances between the blade and tissue (0 and 0.25 mm) did not show a significant temperature difference; however, the tissue temperature increased with increasing blade inclination angle. We concluded that using a normal cut angle and set at a multiple shorter-time power-on with intermittent power-off operation procedure can reduce the risk of thermal damage during monopolar electrosurgery.


Asunto(s)
Electrocirugia , Instrumentos Quirúrgicos , Análisis de Elementos Finitos , Electrocirugia/métodos
6.
Artículo en Inglés | MEDLINE | ID: mdl-36231711

RESUMEN

Surgical reconstruction and postoperative rehabilitation are both important for restoring function in patients with traumatic brachial plexus injuries (BPIs). The current study aimed to understand variations in recovery progression among patients with different injury levels after receiving the nerve transfer methods. A total of 26 patients with BPIs participated in a rehabilitation training program over 6 months after nerve reconstruction. The differences between the first and second evaluations and between C5-C6 and C5-C7 BPIs were compared. Results showed significant improvements in elbow flexion range (p = 0.001), British Medical Research Council's score of shoulder flexion (p = 0.046), shoulder abduction (p = 0.013), shoulder external rotation (p = 0.020), quantitative muscle strength, and grip strength at the second evaluation for both groups. C5-C6 BPIs patients showed a larger shoulder flexion range (p = 0.022) and greater strength of the shoulder rotator (p = 0.004), elbow flexor (p = 0.028), elbow extensor (p = 0.041), wrist extensor (p = 0.001), and grip force (p = 0.045) than C5-C7 BPIs patients at the second evaluation. Our results indicated different improvements among patients according to injury levels, with quantitative values assisting in establishing goals for interventions.


Asunto(s)
Plexo Braquial , Articulación del Codo , Transferencia de Nervios , Plexo Braquial/lesiones , Plexo Braquial/cirugía , Codo/cirugía , Humanos , Transferencia de Nervios/métodos , Rango del Movimiento Articular , Recuperación de la Función/fisiología , Resultado del Tratamiento
7.
Open Forum Infect Dis ; 9(3): ofac072, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35237704

RESUMEN

BACKGROUND: Controlling latent tuberculosis infection (LTBI) is important in eliminating tuberculosis (TB); however, the prevalence of LTBI has rarely been studied in patients with nontuberculous mycobacterial (NTM) lung disease (LD) and colonization (LC). METHODS: We prospectively recruited subjects with NTM isolated from sputum mycobacterial cultures from December 2011 to June 2019. NTM-LD and NTM-LC were defined according to the American Thoracic Society guidelines. Patients with negative cultures were recruited as controls. Patients with a history of active TB or positive TB cultures were excluded. LTBI was confirmed using a QuantiFERON-TB Gold In-tube test. The prevalence and factors associated with LTBI were analyzed. RESULTS: A total of 406 participants were enrolled, including 171 in the NTM-LD group, 153 in the NTM-LC group, and 82 in the control group. The prevalence of LTBI was higher in the NTM-LD and NTM-LC groups than in the controls (21.6%, 20.9%, and 6.1%; P = .006). Multivariable analysis showed that old age (adjusted odds ratio [aOR], 1.021, per year increment; P = .042), NTM-LD (aOR, 4.030; P = .005), NTM-LC (aOR, 3.610; P = .011, compared with the controls), and pulmonary cavitary lesions (aOR, 3.393; P = .034) were independently associated with LTBI. CONCLUSIONS: The prevalence of LTBI was higher in the patients with NTM-LD and NTM-LC than in the controls. Old age, pulmonary cavitation, and NTM isolated from sputum were associated with a higher risk of LTBI.

8.
BMC Musculoskelet Disord ; 23(1): 131, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35139848

RESUMEN

BACKGROUND: Repetitive exertion in supination/pronation could increase the risk of forearm diseases due to fatigue. Kinesio taping (KT) is a physical therapy technique that decreases muscle tone and musculoskeletal disorders (MSDs) risk. Many assumptions about taping have been made and several studies have considered the taping applications; however, the effect of KT on strength and fatigue of the forearm supination/pronation remains unclear. The purpose of this study was to evaluate the effect of KT on forearm performance fatigability. METHODS: A screwing test was constructed to measure the forearm force loss and screwing efficiency during repetitive supination/pronation. Data from 18 healthy adults who underwent both KT and no taping (NT) sessions were used to investigate the forearm strength change in terms of grip force (GF), driving torque (DT), and push force (PF). The maximal isometric forces before and after the screwing test and force decreasing rate (efficiency) during screwing were evaluated to assess the performance fatigability in KT and NT conditions. RESULTS: A statistically significant force loss (FL) in maximal isometric GF (p = 0.039) and maximal isometric DT (p = 0.044); however, no significant difference was observed in maximal isometric PF (p = 0.426) between NT and KT. KT provides greater screwing efficiency than NT. CONCLUSIONS: KT could not improve FL in the maximal muscle strength of the forearm in healthy subjects. KT on the forearm was associated with a lesser decline in DT efficiency than NT, implying that KT could decrease the loss rate of muscle strength and delay the development of fatigue; however, the KT did not yield improvements in PF while performing screwing tasks.


Asunto(s)
Cinta Atlética , Antebrazo , Adulto , Fatiga , Humanos , Pronación , Supinación
9.
Bioengineering (Basel) ; 10(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36671603

RESUMEN

The hybrid dynamic stabilization system, Dynesys-Transition-Optima, represents a novel pedicle-based construct for the treatment of lumbar degenerative disease. The theoretical advantage of this system is to stabilize the treated segment and preserve the range of motion within the adjacent segment while potentially decreasing the risk of adjacent segment disease following lumbar arthrodesis. Satisfactory short-term outcomes were previously demonstrated in the Dynesys-Transition-Optima system. However, long-term follow-up reported accelerated degeneration of adjacent segments and segmental instability above the fusion level. This study investigated the biomechanical effects of the Dynesys-Transition-Optima system on segment motion and intradiscal pressure at adjacent and implanted levels. Segmental range of motion and intradiscal pressure were evaluated under the conditions of the intact spine, with a static fixator at L4-5, and implanted with DTO at L3-4 (Dynesys fixator) and L4-5 (static fixator) by applying the loading conditions of flexion/extension (±7.5 Nm) and lateral bending (±7.5 Nm), with/without a follower preload of 500 N. Our results showed that the hybrid Dynesys-Transition-Optima system can significantly reduce the ROM at the fusion level (L4-L5), whereas the range of motion at the adjacent level (L3-4) significantly increased. The increase in physiological loading could be an important factor in the increment of IDP at the intervertebral discs at the lumbar spine. The Dynesys-Transition-Optima system can preserve the mobility of the stabilized segments with a lesser range of motion on the transition segment; it may help to prevent the occurrence of adjacent segment degeneration. However, the current study cannot cover all the issues of adjacent segmental diseases. Future investigations of large-scale and long-term follow-ups are needed.

10.
Artículo en Inglés | MEDLINE | ID: mdl-33808083

RESUMEN

We compared the physical function performances of community-dwelling and day care center older adults with and without regular physical activity (PA). A total of 163 Taiwanese older adults living in rural communities participated. PA habits and physical functional performances were assessed. The participants were divided into community-dwelling (CD) and senior day care (DC) center groups that were further classified into regular physical activity (RPA) and non-physical activity (NPA) subgroups. Comparison took place between subgroups. In the CD group, only the grip strength, pinch strength, and box and blocks test scored significantly better for the participants with regular PA. Muscle strength, flexibility, and three items of functional ability of participants with regular PA were significantly better in the DC group. An active lifestyle contributes to a good old-age life. The effective amount of PA and the reduction of sedentary time should be advocated to prevent frailty and disability in older adults.


Asunto(s)
Fragilidad , Rendimiento Físico Funcional , Anciano , Ejercicio Físico , Humanos , Vida Independiente , Conducta Sedentaria
11.
Appl Ergon ; 87: 103135, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32501253

RESUMEN

This study investigated the muscle strength and performance fatigability of the forearms in eight male orthopaedic surgeons when performing bone screw fixations. Each surgeon performed an eight-bone screws operations in a porcine femur model to simulate fractural fixation using plating technique. The pre- and post-fatigue maximum isometric forces and corresponding electromyography responses were measured to assess the forearm muscle strength loss and fatigue due to screwing. Results showed that after eight bone screws were inserted, the maximal grip force, maximal driving torque and maximal push force losses were approximately 29%, 20% and 23%, respectively. While the grip force and/or driving torque acting, both the brachioradialis and extensor carpi ulnaris had a higher percentage change of EMG than the biceps brachii. The driving forces decreased with the number of screw insertions; however, the insertion time increased parabolically with the number of screws and significantly decreased the insertion rate of the screws, indicating that forearm muscle fatigue may occur in surgeons who treat fracture fixation using more than eight bone screws.


Asunto(s)
Tornillos Óseos , Fijación de Fractura , Enfermedades Profesionales/etiología , Cirujanos Ortopédicos , Trabajo/fisiología , Adulto , Animales , Fenómenos Biomecánicos , Codo/fisiología , Electromiografía , Antebrazo , Fuerza de la Mano/fisiología , Humanos , Masculino , Modelos Animales , Fatiga Muscular/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético , Porcinos , Análisis y Desempeño de Tareas , Torque
12.
Med Eng Phys ; 81: 1-12, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32475768

RESUMEN

During bone burring, the heat generated due to friction at the bone-burr interface may cause thermal damage to the bone. Therefore, it is necessary to assess bone temperature distribution around a burring site and identify high-risk regions for thermal necrosis due to bone burring. In this study, a three-dimensional (3-D) dynamic elastoplastic finite element model for the burring process was developed and experimentally validated to investigate the influence of burring parameters (rotational speeds: 3,000, 10,000, 15,000 and 60,000 rpm; feed rates: 0.5, 0.9, 1.5 and 3.0 mm/s) on heat generation and evaluate the risk region for thermal necrosis. Calculated bone temperatures were compared with experimental values and found to be in good agreement with them. The analytical results demonstrated a linear relationship between the burring time and friction energy. In addition, the friction energy increased with the bone temperature. The high-risk thermal necrosis zone was measured from the edge of burring (y-direction) at feed rates of 0.5, 0.9, 1.5 and 3.0 mm/s and was found to be 7.8, 7.3, 6.6 and 5.5 mm, respectively. When the burr rotational speed increased from 3,000 to 60,000 rpm, the high-risk zone for thermal necrosis increased from 4.5 to 8.1 mm. We concluded that both the friction energy and the bone temperature increased in proportion with the burr rotational speed. Reducing burr rotational speeds and/or increasing feed rates may decrease the rise in bone temperature, thus decreasing the potential for thermal necrosis near the burring site. Our model can be used to select the optimal surgery parameters to minimise the risk of thermal necrosis due to bone burring and to assist in the design of optimal orthopaedic drill handpieces.


Asunto(s)
Huesos/patología , Huesos/cirugía , Análisis de Elementos Finitos , Calor , Procedimientos Ortopédicos/efectos adversos , Humanos , Necrosis , Medición de Riesgo , Rotación , Factores de Tiempo
13.
Gait Posture ; 77: 201-206, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32058284

RESUMEN

BACKGROUND: A novel stair-climber called a pinnacle trainer (PT) provides both sagittal and frontal plane exercise, making it different from a step trainer (ST), which provides only sagittal plane exercise. Exercise with different trajectories may produce different biomechanical responses. There are currently no guidelines for choosing between a PT and a ST for different training or rehabilitation purposes. RESEARCH QUESTIONS: Are there differences in the electromyographic patterns of lower extremity musculature and biomechanical responses of the knee joint during exercise between using a PT and a ST? METHODS: This study utilizes a prospective observational study design. Eighteen healthy males participated in the study. A six-axis force and torque transducer embedded in the machine pedal synchronized with a three-dimensional motion capture system were utilized to measure kinematic and kinetic data of the right knee during the stepping movement. The activities of six lower extremity muscles of the same limb were captured with surface electromyography during exercise on the two trainer types. RESULTS: The co-activation index of the vastus lateralis (VL) and the biceps femoris (BF) recorded during ST exercise was significantly greater than that for the PT exercise. Moreover, exercise using the ST produced a significantly greater knee downward force compared to that for the PT. Exercise with the PT produced a significantly greater internal knee varus moment compared to that for the ST. SIGNIFICANCE: The ST provided greater co-activation of the BF and VL and a greater knee joint downward force, which may decrease the antero-posterior displacement of the tibia relative to the femur. Exercise with the PT produced a significant internal knee varus moment and a more balanced muscular activation on the vastus medialis and VL compared to that for the ST, which may decrease the maltracking of the patella.


Asunto(s)
Ejercicio Físico/fisiología , Articulación de la Rodilla/fisiología , Rodilla/fisiología , Músculo Esquelético/fisiología , Adulto , Fenómenos Biomecánicos , Electromiografía , Prueba de Esfuerzo/instrumentación , Humanos , Cinética , Masculino , Estudios Prospectivos , Adulto Joven
14.
Gait Posture ; 74: 45-52, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31442822

RESUMEN

BACKGROUND: A pinnacle trainer is a stair climber that has a biplane exercise trajectory and an adjustable pedal stance width (PSW). A pinnacle trainer integrated with a body weight support (BWS) system can help overweight individuals or individuals with poor balance exercise safely by reducing excessive or improper joint loads, preventing training-related injuries. However, few studies have investigated the biomechanical features of the lower extremities during pinnacle trainer exercise with and without partial BWS for various PSWs. RESEARCH QUESTION: We aimed to investigate the effects of partial BWS and PSW on the joint loading of the lower extremities during stepping on a pinnacle trainer. METHODS: Seventeen healthy adults exercised on the pinnacle trainer with or without BWS using various PSWs. The joint resultant forces and joint moments of the lower extremities were calculated according to the kinematic and kinetic data measured via a motion capture system and force transducers on the pedals, respectively. RESULTS: The joint resultant forces and joint moments of the lower extremities significantly decreased with increasing percentage of BWS. The internal knee adduction moment and internal hip abduction moment significantly increased with increasing PSW. For every kilogram of BWS, the joint loading of the lower extremities decreased by approximately 1% of the joint resultant forces of body weight during exercise with the pinnacle trainer. SIGNIFICANCE: Exercise on the pinnacle trainer with partial BWS significantly reduced joint loading. Exercise with a wider pedal stance may be helpful for knee osteoarthritis rehabilitation as it produces greater internal hip abduction and internal knee adduction moments.


Asunto(s)
Peso Corporal/fisiología , Ejercicio Físico/fisiología , Extremidad Inferior/fisiología , Sobrepeso/fisiopatología , Postura/fisiología , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Cinética , Masculino , Persona de Mediana Edad , Adulto Joven
15.
Biomed Eng Online ; 18(1): 64, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31118104

RESUMEN

BACKGROUND: Patellar tendon rupture is a potentially devastating injury. Surgical repair is the primary treatment recommended for the patients with patellar tendon ruptures. Given the tendon properties, the suture technique is critical for proper tissue repair. Providing adequate loading during early mobilization is essential to prevent tendon suture repair failure. Therefore, the current study evaluated the mechanical characteristics of various applied loadings on patellar tendon repair using Krackow suture via a porcine model. METHODS: Twelve fresh porcine hindlimbs with patellar tendon rupture were repaired by Krackow method using synthetic and non-absorbable No. 5 Ethibond sutures. Loadings of 100 and 200 N were applied during the cyclic loading test. A three-dimensional optical motion capture system was used to record the gap formation at the initial, 50th, 100th, 150th, 200th, 250th, 500th, 750th, and 1000th cycle. After cyclic loading, the specimen was loaded to failure under displacement control at a rate of 1 mm/s. RESULTS: Suture breakage was the primary failure mode in both loading conditions. After 1000 cyclic loadings of 100 N, the ultimate failure strength was 243.6 ± 25.8 N. However, the specimens tested under 200 N of loading failed before reaching 200 cycles. Under the 100 N loading, the largest gap deformation (1.89 ± 0.23 mm) and residual deformation (0.213 ± 0.183 mm) were found in the initial cycle. The average cumulative displacement was 5.13 mm from the initial cycle to the 100th cycle and 4.5 mm from the 250th to the 1000th cycle. CONCLUSIONS: Our findings can serve as reference values for further comparisons with various repair techniques or materials. This study suggests that the initially applied load after patellar tendon repair is an important risk factor of re-rupture.


Asunto(s)
Fenómenos Mecánicos , Rótula , Tendones/fisiopatología , Animales , Fenómenos Biomecánicos , Ensayo de Materiales , Porcinos , Traumatismos de los Tendones/fisiopatología , Soporte de Peso
16.
Comput Methods Programs Biomed ; 162: 253-261, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29903492

RESUMEN

BACKGROUND AND OBJECTIVE: During bone drilling, the heat generated by friction depends directly on bone quality and surgical parameters. Excessive bone temperatures may cause thermal necrosis around the pilot hole, weaken the purchase of inserted screws, and in turn reduce the stability of screw fixation. A few studies have addressed the key parameters of drilling, such as the rotation speed of the drill-bit, feed force (axial force), feed rate, tool type, and tip geometry of drill-bits. Nevertheless, in the literature, information on the relationship between bone quality and thermally affected regions is still lacking. This study employed a three-dimensional dynamic elastoplastic finite element model to evaluate the influence of surgical parameters on the bone temperature elevation and assess the risk region of thermal necrosis for different bone qualities as a function of drilling parameters. METHODS: To ascertain the heat generation rate and the high-risk region of thermal necrosis, the effects of bone quality, feed rate, feed force, and drill-bit diameter on the bone temperature elevation were explained using a three-dimensional dynamic elastoplastic finite element model, which was validated through experimental measurements. RESULTS: The bone temperature was affected by the drilling parameters; the maximum temperature was attained at the junction of cancellous and cortical bones. The bone temperature increased with cortical bone thickness, bone density, and drill-bit diameter, and it decreased with the drilling speed and feed force. CONCLUSIONS: The present model could assess the risk region of thermal necrosis by accurately analyzing the bone temperature elevation for various bone qualities, feed forces, and feed rates. The bone temperature increased with the bone mineral density and cortical bone thickness. The highest bone temperature and maximum necrosis region were found near the junction of cortical and cancellous bones. Increasing the drilling speed or feed force can minimize the bone temperature elevation and the risk range of thermal necrosis.


Asunto(s)
Densidad Ósea , Huesos/patología , Ortopedia/métodos , Huesos/diagnóstico por imagen , Diseño de Equipo , Análisis de Elementos Finitos , Calor , Humanos , Imagenología Tridimensional , Riesgo , Cirugía Asistida por Computador
17.
Med Biol Eng Comput ; 55(11): 1949-1957, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28353132

RESUMEN

A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.


Asunto(s)
Huesos/fisiología , Densidad Ósea/fisiología , Análisis de Elementos Finitos , Humanos , Necrosis/fisiopatología , Procedimientos Ortopédicos/métodos , Temperatura
18.
BMC Musculoskelet Disord ; 18(1): 64, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28153021

RESUMEN

BACKGROUND: Proximal humeral fractures treated with locking plate can fail due to varus collapse, especially in osteoporotic bone with medial cortex comminution. The use of an intramedullary strut together with locking plate fixation may strengthen fixation and provide additional medial support to prevent the varus malalignment. This study biomechanically investigates the influence of an intramedullary cortical bone strut on the cyclic stability of proximal humeral fractures stabilized by locking plate fixation in a cadaver model. METHODS: Ten cadaveric humeri were divided into two groups statistically matched for bone density. Each specimen was osteotomized with 10 mm gap at the surgical neck. The non-augmented group stabilized with locking plate alone; in the augmented group, a locking plate was used combined with an intramedullary cortical bone strut. The strut was retrograded into the subchondral bone, and three humeral head screws were inserted into the strut to form a plate-screw-strut mechanism. The cyclic axial load was performed to 450 N for 6000 cycles and then loaded to failure. Construct stiffness, cyclic loading behavior and failure strength were analyzed to identify differences between groups. RESULTS: The augmented constructs were significantly stiffer than the non-augmented constructs during cycling. On average, the maximum displacements at 6000 cycles for non-augmented and augmented groups were 3.10 ± 0.75 mm and 1.7 ± 0.65 mm (p = 0.01), respectively. The mean peak-to-peak (inter cycle) displacement at 6000 cycles was about 2 times lower for the augmented group (1.36 ± 0.68 mm vs. 2.86 ± 0.51 mm). All specimens showed varus collapse combined with loss of screw fixation of the humeral head. The failure load of the augmented group was increased by 2.0 (SD = 0.41) times compared with the non-augmented group (p < 0.001). CONCLUSIONS: The stability and strength of the locking plate augmented with an intramedullary strut were significantly increased. For bone with poor quality, the subsidence of the locked screws led larger displacement, decreased the stability of the constructs, however, the plate-screw-strut mechanism provided more rigidity to stabilize the fixation. This study emphasized the importance of intramedullary support for the proximal humeral fractures fixed with a locked plate under cyclic loading, especially in bone with poor quality. This work is based on the results of cadaver model, further in vivo analysis is necessary to determine if the clinical results can be extrapolated from this data.


Asunto(s)
Hueso Cortical/trasplante , Fijación Intramedular de Fracturas/métodos , Cabeza Humeral/fisiología , Fracturas Osteoporóticas/cirugía , Fracturas del Hombro/cirugía , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos , Densidad Ósea , Placas Óseas , Tornillos Óseos , Cadáver , Femenino , Fijación Intramedular de Fracturas/instrumentación , Fracturas Conminutas/cirugía , Humanos , Cabeza Humeral/diagnóstico por imagen , Cabeza Humeral/cirugía , Masculino , Tomografía Computarizada por Rayos X , Soporte de Peso
19.
Med Eng Phys ; 38(11): 1314-1321, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27645310

RESUMEN

This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries.


Asunto(s)
Tornillos Óseos/efectos adversos , Implantes Dentales , Análisis de Elementos Finitos , Mandíbula/cirugía , Temperatura , Animales , Elasticidad , Porcinos
20.
PeerJ ; 4: e2017, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27190718

RESUMEN

The Phalaenopsis orchid is an important potted flower of high economic value around the world. We report the 3.1 Gb draft genome assembly of an important winter flowering Phalaenopsis 'KHM190' cultivar. We generated 89.5 Gb RNA-seq and 113 million sRNA-seq reads to use these data to identify 41,153 protein-coding genes and 188 miRNA families. We also generated a draft genome for Phalaenopsis pulcherrima 'B8802,' a summer flowering species, via resequencing. Comparison of genome data between the two Phalaenopsis cultivars allowed the identification of 691,532 single-nucleotide polymorphisms. In this study, we reveal that the key role of PhAGL6b in the regulation of labellum organ development involves alternative splicing in the big lip mutant. Petal or sepal overexpressing PhAGL6b leads to the conversion into a lip-like structure. We also discovered that the gibberellin pathway that regulates the expression of flowering time genes during the reproductive phase change is induced by cool temperature. Our work thus depicted a valuable resource for the flowering control, flower architecture development, and breeding of the Phalaenopsis orchids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA