Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Fundam Clin Pharmacol ; 37(2): 253-262, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36191338

RESUMEN

Afatinib is used to treat non-small cell lung cancer cells (NSCLC), and its mechanism involves irreversible inhibition of epidermal growth factor receptor (EGFR) tyrosine kinase. In this study, we examined if afatinib had cytotoxic action against NSCLC other than inhibition of tyrosine kinase. Afatinib (1-30 µM) caused apoptotic death in A549 NSCLC in a concentration-dependent manner. Afatinib triggered Ca2+ influx without causing Ca2+ release, and the Ca2+ influx was unaffected by sodium orthovanadate (SOV, an inhibitor of tyrosine phosphatase), suggesting that afatinib-triggered Ca2+ response was unrelated to its inhibition of tyrosine kinase. Addition of afatinib also promoted Mn2+ influx. Ca2+ influx triggered by afatinib was resistant to SKF96365 and ruthenium red (two general blockers of TRP channels) and, unexpectedly, Ni2+ (a non-specific Ca2+ channel blocker). Afatinib caused an increase in mitochondrial Ca2+ level, an initial mitochondrial hyperpolarization (4 h) and followed by mitochondrial potential collapse (24-48 h). Afatinib-induced cell death was slightly but significantly alleviated in low extracellular Ca2+ condition or under pharmacological block of mitochondrial permeability transition pore (MPTP) opening by cyclosporin A. Therefore, in addition to tyrosine kinase inhibition as a major anti-cancer mechanism of afatinib, stimulation of an atypical Ca2+ influx pathway, mitochondrial Ca2+ overload, and potential collapse in part contribute to afatinib-induced cell death.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Afatinib/farmacología , Afatinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Receptores ErbB , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación
2.
Chin J Physiol ; 64(2): 80-87, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33938818

RESUMEN

Ca2+-sensing receptors (CaSR), activated by elevated concentrations of extracellular Ca2+, have been known to regulate functions of thyroid cells, neurons, and endothelial cells (EC). In this report, we studied CaSR-mediated Ca2+ influx in mouse cerebral microvascular EC (bEND.3 cells). Cytosolic free Ca2+ concentration and Mn2+ influx were measured by fura-2 microfluorometry. High (3 mM) Ca2+ (CaSR agonist), 3 mM spermine (CaSR agonist), and 10 µM cinacalcet (positive allosteric modulator of CaSR) all triggered Ca2+ influx; however, spermine, unlike high Ca2+ and cinacalcet, did not promote Mn2+ influx and its response was poorly sensitive to SKF 96365, a TRP channel blocker. Consistently, 2-aminoethoxydiphenyl borate and ruthenium red (two other general TRP channel blockers) suppressed Ca2+ influx triggered by cinacalcet and high Ca2+ but not by spermine. Ca2+ influx triggered by high Ca2+, spermine, and cinacalcet was similarly suppressed by A784168, a potent and selective TRPV1 antagonist. Our results suggest that CaSR activation triggered Ca2+ influx via TRPV1 channels; intriguingly, pharmacological, and permeability properties of such Ca2+ influx depended on the stimulating ligands.


Asunto(s)
Señalización del Calcio , Células Endoteliales , Animales , Calcio/metabolismo , Células Endoteliales/metabolismo , Ratones , Receptores Sensibles al Calcio/metabolismo
3.
Biochem Biophys Res Commun ; 526(1): 117-121, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32197839

RESUMEN

Tannic acid (TA) is a polyphenol compound present in wines and many beverages. Although previous works have shown that TA could cause vasodilation in an endothelial cell (EC)-dependent manner, there is hitherto no report showing whether TA could raise EC cytosolic Ca2+ concentration. In this work we examined the effects of TA on cytosolic Ca2+ of mouse brain bEND.3 EC. TA (1-30 µM) caused a slow elevation in cytosolic Ca2+ level in a concentration-dependent manner. At 30 µM, TA triggered Ca2+ influx without causing intracellular Ca2+ release. TA-triggered Ca2+ influx was suppressed by Ni2+ (a non-specific Ca2+ channel blocker), ruthenium red and SKF 96365 (non-specific TRP channel blockers), CBA (a selective TRPM4 inhibitor) and M 084 (a selective TRPC4/C5 blocker). However, TA-triggered Ca2+ influx pathway was not permeable to Mn2+. Our results suggest TA activated TRP channels, possibly TRPM4 and TRPC4/C5, to promote influx of Ca2+.


Asunto(s)
Bebidas/análisis , Calcio/metabolismo , Células Endoteliales/metabolismo , Taninos/análisis , Canales de Potencial de Receptor Transitorio/metabolismo , Vasodilatadores/análisis , Vino/análisis , Animales , Señalización del Calcio/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Imidazoles/farmacología , Manganeso/metabolismo , Ratones , Níquel/toxicidad , Rojo de Rutenio/farmacología , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores
4.
Fundam Clin Pharmacol ; 33(1): 52-62, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29974515

RESUMEN

A pathological feature in atherosclerosis is the dysfunction and death of vascular endothelial cells (EC). Oxidized low-density lipoprotein (LDL), known to accumulate in the atherosclerotic arterial walls, impairs endothelium-dependent relaxation and causes EC apoptosis. A major bioactive ingredient of the oxidized LDL is lysophosphatidylcholine (LPC), which at higher concentrations causes apoptosis and necrosis in various EC. There is hitherto no report on LPC-induced cytotoxicity in brain EC. In this work, we found that LPC caused cytosolic Ca2+ overload, mitochondrial membrane potential decrease, p38 activation, caspase 3 activation and eventually apoptotic death in mouse cerebral bEND.3 EC. In contrast to reported reactive oxygen species (ROS) generation by LPC in other EC, LPC did not trigger ROS formation in bEND.3 cells. Pharmacological inhibition of p38 alleviated LPC-inflicted cell death. We examined whether heparin could be cytoprotective: although it could not suppress LPC-triggered Ca2+ signal, p38 activation and mitochondrial membrane potential drop, it did suppress LPC-induced caspase 3 activation and alleviate LPC-inflicted cytotoxicity. Our data suggest LPC apoptotic death mechanisms in bEND.3 might involve mitochondrial membrane potential decrease and p38 activation. Heparin is protective against LPC cytotoxicity and might intervene steps between mitochondrial membrane potential drop/p38 activation and caspase 3 activation.


Asunto(s)
Aterosclerosis/prevención & control , Encéfalo/patología , Heparina/farmacología , Lisofosfatidilcolinas/toxicidad , Animales , Apoptosis/efectos de los fármacos , Aterosclerosis/patología , Encéfalo/efectos de los fármacos , Calcio/metabolismo , Caspasa 3/metabolismo , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Lipoproteínas LDL/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Fundam Clin Pharmacol ; 32(5): 499-506, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29752814

RESUMEN

Valproic acid (VA) is currently used to treat epilepsy and bipolar disorder. It has also been demonstrated to promote neuroprotection and neurogenesis. Although beneficial actions of VA on brain blood vessels have also been demonstrated, the effects of VA on brain endothelial cell (EC) Ca2+ signaling are hitherto unreported. In this report, we examined the effects of VA on agonist-triggered Ca2+ signaling in mouse cortical bEND.3 EC. While VA (100 µm) did not cause an acute inhibition of ATP-triggered Ca2+ signaling, a 30-min VA treatment strongly suppressed ATP-triggered intracellular Ca2+ release; however, such treatment did not affect Ca2+ release triggered by cyclopiazonic acid, an inhibitor of SERCA Ca2+ pump, suggesting there was no reduction in Ca2+ store size. VA-activated p38 signaling, and VA-induced inhibition of ATP-triggered Ca2+ release was prevented by SB203580, a p38 inhibitor, suggesting VA caused the inhibition by activating p38. Remarkably, VA treatment did not affect acetylcholine-triggered Ca2+ release, suggesting VA may not inhibit inositol 1,4,5-trisphosphate-induced Ca2+ release per se, and may not act directly on Gq or phospholipase C. Taken together, our results suggest VA treatment, via a p38-dependent mechanism, led to an inhibition of purinergic receptor-effector coupling.


Asunto(s)
Anticonvulsivantes/farmacología , Canales de Calcio/efectos de los fármacos , Ácido Valproico/farmacología , Adenosina Trifosfato/farmacología , Animales , Línea Celular , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Ratones , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
Int J Nanomedicine ; 11: 4583-4594, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27695319

RESUMEN

Osteoporosis is a result of imbalance between bone formation by osteoblasts and resorption by osteoclasts (OCs). In the present study, we investigated the potential of limiting the aggravation of osteoporosis by reducing the activity of OCs through thermolysis. The proposed method is to synthesize bisphosphonate (Bis)-conjugated iron (II, III) oxide (Fe3O4) nanoparticles and incorporate them into OCs. The cells should be subsequently exposed to radiofrequency (RF) to induce thermolysis. In this study, particles of Fe3O4 were first synthesized by chemical co-precipitation and then coated with dextran (Dex). The Dex/Fe3O4 particles were then conjugated with Bis to form Bis/Dex/Fe3O4. Transmission electron microscopy revealed that the average diameter of the Bis/Dex/Fe3O4 particles was ~20 nm. All three kinds of nanoparticles were found to have cubic inverse spinel structure of Fe3O4 by the X-ray diffraction analysis. Fourier transform infrared spectroscopy confirmed that the Dex/Fe3O4 and Bis/Dex/Fe3O4 nanoparticles possessed their respective Dex and Bis functional groups, while a superconducting quantum interference device magnetometer measured the magnetic moment to be 24.5 emu. In addition, the Bis/Dex/Fe3O4 nanoparticles were fully dispersed in double-distilled water. Osteoblasts and OCs were individually cultured with the nanoparticles, and an MTT assay revealed that they were non-cytotoxic. An RF system (42 kHz and 450 A) was used to raise the temperature of the nanoparticles for 20 minutes, and the thermal effect was found to be sufficient to destroy OCs. Furthermore, in vivo studies verified that nanoparticles were indeed magnetic resonance imaging contrast agents and that they accumulated after being injected into the body of rats. In conclusion, we developed a water-dispersible magnetic nanoparticle that had RF-induced thermogenic properties, and the results indicated that the Bis/Dex/Fe3O4 nanoparticle had the potential for controlling osteoporosis.


Asunto(s)
Alendronato/farmacología , Nanopartículas de Magnetita/química , Osteoporosis/tratamiento farmacológico , Alendronato/química , Animales , Células Cultivadas , Precipitación Química , Medios de Contraste/química , Dextranos/química , Óxido Ferrosoférrico/química , Imagen por Resonancia Magnética , Nanopartículas de Magnetita/administración & dosificación , Masculino , Ratones , Microscopía Electrónica de Transmisión , Osteoclastos/efectos de los fármacos , Ratas Wistar , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Difracción de Rayos X
7.
Eur J Pharmacol ; 769: 280-6, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26607466

RESUMEN

Parthenolide is a sesquiterpene lactone compound isolated from the leaves and flowerheads of the plant feverfew (Tanacetum parthenium). The anticancer effects of parthenolide have been well studied and this lactone compound is currently under clinical trials. Parthenolide is also a protective agent in cardiac reperfusion injury via its inhibition of nuclear factor-κB (NF-κB). Not much is known if this compound affects signal transduction in non-tumor cells. We investigated whether parthenolide affected Ca(2+) signaling in endothelial cells, key components in regulating the vascular tone. In this work using mouse cortical microvascular bEND.3 endothelial cells, we found that a 15-h treatment with parthenolide resulted in amplified ATP-triggered Ca(2+) signal; the latter had a very slow decay rate suggesting suppression of Ca(2+) clearance. Evidence suggests parthenolide suppressed Ca(2+) clearance by inhibiting the plasmalemmal Ca(2+) pump; such suppression did not result from decreased expression of the plasmalemmal Ca(2+) pump protein. Rather, such suppression was possibly a consequence of endoplasmic reticulum (ER) stress, since salubrinal (an ER stress protector) was able to alleviate parthenolide-induced Ca(2+) clearance suppression. Given the current deployment of parthenolide as an anti-cancer drug in clinical trials and the potential usage of this lactone as a cardioprotectant, it is important to examine in details the perturbing effects of parthenolide on Ca(2+) homeostasis in endothelial cells and neighboring vascular smooth muscle cells, activities of which exert profound effects on hemodynamics.


Asunto(s)
Calcio/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Sesquiterpenos/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Citoprotección/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Endoteliales/citología , Homeostasis/efectos de los fármacos , Ratones , Microvasos/citología
8.
Eur J Pharmacol ; 755: 80-7, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25771453

RESUMEN

Release of nitric oxide (NO) is triggered by a rise in endothelial cell (EC) cytosolic Ca(2+) concentration ([Ca(2+)]i) and is of prime importance in vascular tone regulation as NO relaxes vascular smooth muscle. Agonists could stimulate EC [Ca(2+)]i elevation by triggering Ca(2+) influx via plasma membrane ion channels, one of which is the store-operated Ca(2+) channel; the latter opens as a result of agonist-triggered internal Ca(2+) release. Endotoxin (lipopolysaccharide, LPS) could cause sepsis, which is often the fatal cause in critically ill patients. One of the LPS-induced damages is EC dysfunction, eventually leading to perturbations in hemodynamics. We obtained data showing that LPS-challenged mouse cerebral cortex endothelial bEND.3 cells did not suffer from apoptotic death, and in fact had intact agonist-triggered intracellular Ca(2+) release; however, they had reduced store-operated Ca(2+) entry (SOCE) after LPS treatment for 3h or more. Using real-time PCR, we did not find a decrease in gene expression of stromal interaction molecule 1 (STIM1) and Orai1 (two SOCE protein components) in bEND.3 cells treated with LPS for 15h. LPS inhibitory effects could be largely prevented by sodium salicylate (an inhibitor of nuclear factor-κB; NF-κB) or SB203580 (an inhibitor of p38 mitogen-activated protein kinases; p38 MAPK), suggesting that the p38 MAPK-NF-κB pathway is involved in SOCE inhibition.


Asunto(s)
Calcio/metabolismo , Corteza Cerebral/citología , Células Endoteliales/efectos de los fármacos , Lipopolisacáridos/farmacología , Animales , Canales de Calcio/genética , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/metabolismo , Expresión Génica/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , FN-kappa B/metabolismo , Proteína ORAI1 , Molécula de Interacción Estromal 1 , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Acta Cardiol Sin ; 31(1): 33-41, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27122844

RESUMEN

BACKGROUND: Cardiac cellular injury as a consequence of ischemia and reperfusion involves nuclear factor-κB (NF-κ B), amongst other factors, and NF-κ B inhibitors could substantially reduce myocardial infarct size. Parthenolide, a sesquiterpene lactone compound which could inhibit NF-κ B, has been shown to ameliorate myocardial reperfusion injury but may also produce toxic effects in cardiomyocytes at high concentrations. The aim of this study was to examine the cytotoxic effects of this drug on H9c2 cardiomyoblasts, which are precursor cells of cardiomyocytes. METHODS: Cell viability and apoptosis were examined by MTT and TUNEL assay, respectively, and protein expression was analyzed by western blot. Reactive oxygen species (ROS) production was measured using DCFH-DA as dye. Cytosolic Ca(2+) concentration and mitochondrial membrane potential were measured microfluorimetrically using, respectively, fura 2 and rhodamine 123 as dyes. RESULTS: Parthenolide caused apoptosis at 30 µ M, as judged by TUNEL assay and Bax and cytochrome c translocation. It also caused collapse of mitochondrial membrane potential and endoplasmic reticulum stress. Parthenolide triggered ROS formation, and vitamin C (antioxidant) partially alleviated parthenolide-induced cell death. CONCLUSIONS: The results suggested that parthenolide at high concentrations caused cytotoxicity in cardiomyoblasts in part by inducing oxidative stress, and demonstrated the imperative for cautious and appropriate use of this agent in cardioprotection. KEY WORDS: Cardiomyoblast; Endoplasmic reticulum stress; Oxidative stress; Parthenolide; Reperfusion injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA