Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Heliyon ; 10(15): e35136, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39157306

RESUMEN

The NLRP3 inflammasome is an essential component of the innate immune system, but excessive activation can lead to inflammatory diseases. Ion fluxes across the plasma membrane or from intracellular stores are known to regulate NLRP3 inflammasome activation. Deep-sea water (DSW) contains high concentrations of many mineral ions, which could potentially influence NLRP3 inflammasome activation. However, the impact of DSW on NLRP3 inflammasome activation has not been investigated. Here, we demonstrated that DSW with water hardness levels up to 500 mg/L did not affect cell viability or the expression of NLRP3 inflammasome components in macrophages derived from THP-1 cells. However, the DSW significantly inhibited IL-1ß secretion and caspase-1 activation in response to NLRP3 activators such as nigericin, ATP, or monosodium urate (MSU) crystals. Mechanically, it was discovered that the presence of 5 mM magnesium ions (Mg2+), equivalent to the Mg2+ concentration found in the DSW with a water hardness of 500 mg/L, inhibits NLRP3 inflammasome activation. This indicates that Mg2+ contributes to the mechanism by which DSW mitigates NLRP3 inflammasome activation. Moreover, DSW administration effectively lessens MSU-triggered peritonitis in mice, a commonly used model for examining the impacts of NLRP3 inflammasome activation. These results show that DSW enriched with Mg2+ could potentially be beneficial in modulating NLRP3 inflammasome-associated diseases.

2.
Immunology ; 169(3): 271-291, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36708143

RESUMEN

The nucleotide-binding and oligomerization domain, leucine-rich repeats, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in innate immunity and is involved in the pathogenesis of autoinflammatory diseases. Glycolysis regulates NLRP3 inflammasome activation in macrophages. However, how lactic acid fermentation and pyruvate oxidation controlled by the mitochondrial pyruvate carrier (MPC) affect NLRP3 inflammasome activation and autoinflammatory disease remains elusive. We found that the inactivation of MPC with genetic depletion or pharmacological inhibitors, MSDC-0160 or pioglitazone, increased NLRP3 inflammasome activation and IL-1ß secretion in macrophages. Glycolytic reprogramming induced by MPC inhibition skewed mitochondrial ATP-associated oxygen consumption into cytosolic lactate production, which enhanced NLRP3 inflammasome activation in response to monosodium urate (MSU) crystals. As pioglitazone is an insulin sens MSDC-itizer used for diabetes, its MPC inhibitory effect in diabetic individuals was investigated. The results showed that MPC inhibition exacerbated MSU-induced peritonitis in diabetic mice and increased the risk of gout in patients with diabetes. Altogether, we found that glycolysis controlled by MPC regulated NLRP3 inflammasome activation and gout development. Accordingly, prescriptions for medications targeting MPC should consider the increased risk of NLRP3-related autoinflammatory diseases.


Asunto(s)
Diabetes Mellitus Experimental , Gota , Enfermedades Autoinflamatorias Hereditarias , Animales , Ratones , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transportadores de Ácidos Monocarboxílicos/uso terapéutico , Ácido Úrico , Pioglitazona/uso terapéutico , Gota/patología , Interleucina-1beta/metabolismo
3.
Nutrients ; 11(3)2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30823406

RESUMEN

Colorectal cancer (CRC) is one of the most common malignancies worldwide. Inflammation contributes to cancer development and inflammatory bowel disease is an important risk factor for CRC. The aim of this study is to assess whether a widely used probiotic Enterococcus faecalis can modulate the NLRP3 inflammasome and protect against colitis and colitis-associated CRC. We studied the effect of heat-killed cells of E. faecalis on NLRP3 inflammasome activation in THP-1-derived macrophages. Pretreatment of E. faecalis or NLRP3 siRNA can inhibit NLRP3 inflammasome activation in macrophages in response to fecal content or commensal microbes, P. mirabilis or E. coli, according to the reduction of caspase-1 activation and IL-1ß maturation. Mechanistically, E. faecalis attenuates the phagocytosis that is required for the full activation of the NLRP3 inflammasome. In in vivo mouse experiments, E. faecalis can ameliorate the severity of intestinal inflammation and thereby protect mice from dextran sodium sulfate (DSS)-induced colitis and the formation of CRC in wild type mice. On the other hand, E. faecalis cannot prevent DSS-induced colitis in NLRP3 knockout mice. Our findings indicate that application of the inactivated probiotic, E. faecalis, may be a useful and safe strategy for attenuation of NLRP3-mediated colitis and inflammation-associated colon carcinogenesis.


Asunto(s)
Colitis/inducido químicamente , Neoplasias Colorrectales/etiología , Inflamasomas/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Probióticos , Adenosina Trifosfato/farmacología , Animales , Colitis/complicaciones , Neoplasias Colorrectales/prevención & control , Sulfato de Dextran/toxicidad , Enterococcus faecalis , Regulación de la Expresión Génica/efectos de los fármacos , Calor , Interleucina-1beta , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Nigericina/farmacología , Fagocitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA