Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Science ; 349(6250): 814-8, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26293952

RESUMEN

Humans rely on healthy forests to supply energy, building materials, and food and to provide services such as storing carbon, hosting biodiversity, and regulating climate. Defining forest health integrates utilitarian and ecosystem measures of forest condition and function, implemented across a range of spatial scales. Although native forests are adapted to some level of disturbance, all forests now face novel stresses in the form of climate change, air pollution, and invasive pests. Detecting how intensification of these stresses will affect the trajectory of forests is a major scientific challenge that requires developing systems to assess the health of global forests. It is particularly critical to identify thresholds for rapid forest decline, because it can take many decades for forests to restore the services that they provide.


Asunto(s)
Restauración y Remediación Ambiental , Bosques , Estrés Fisiológico , Árboles/fisiología , Monitoreo del Ambiente , Humanos
2.
Biogeosciences ; 7(7): 2147-2157, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23293656

RESUMEN

Soil respiration (SR) constitutes the largest flux of CO(2) from terrestrial ecosystems to the atmosphere. However, there still exist considerable uncertainties as to its actual magnitude, as well as its spatial and interannual variability. Based on a reanalysis and synthesis of 80 site-years for 57 forests, plantations, savannas, shrublands and grasslands from boreal to tropical climates we present evidence that total annual SR is closely related to SR at mean annual soil temperature (SR(MAT)), irrespective of the type of ecosystem and biome. This is theoretically expected for non water-limited ecosystems within most of the globally occurring range of annual temperature variability and sensitivity (Q(10)). We further show that for seasonally dry sites where annual precipitation (P) is lower than potential evapotranspiration (PET), annual SR can be predicted from wet season SR(MAT) corrected for a factor related to P/PET. Our finding indicates that it can be sufficient to measure SR(MAT) for obtaining a well constrained estimate of its annual total. This should substantially increase our capacity for assessing the spatial distribution of soil CO(2) emissions across ecosystems, landscapes and regions, and thereby contribute to improving the spatial resolution of a major component of the global carbon cycle.

4.
Oecologia ; 129(3): 420-429, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28547197

RESUMEN

Using a new approach involving one-time measurements of radiocarbon (14C) in fine (<2 mm diameter) root tissues we have directly measured the mean age of fine-root carbon. We find that the carbon making up the standing stock of fine roots in deciduous and coniferous forests of the eastern United States has a mean age of 3-18 years for live fine roots, 10-18 years for dead fine roots, and 3-18 years for mixed live+dead fine roots. These 14C-derived mean ages represent the time C was stored in the plant before being allocated for root growth, plus the average lifespan (for live roots), plus the average time for the root to decompose (for dead roots and mixtures). Comparison of the 14C content of roots known to have grown within 1 year with the 14C of atmospheric CO2 for the same period shows that root tissues are derived from recently fixed carbon, and the storage time prior to allocation is <2 years and likely <1 year. Fine-root mean ages tend to increase with depth in the soil. Live roots in the organic horizons are made of C fixed 3-8 years ago compared with 11-18 years in the mineral B horizons. The mean age of C in roots increases with root diameter and also is related to branching order. Our results differ dramatically from previous estimates of fine-root mean ages made using mass balance approaches and root-viewing cameras, which generally report life spans (mean ages for live roots) of a few months to 1-2 years. Each method for estimating fine-root dynamics, including this new radiocarbon method, has biases. Root-viewing approaches tend to emphasize more rapidly cycling roots, while radiocarbon ages tend to reflect those components that persist longest in the soil. Our 14C-derived estimates of long mean ages can be reconciled with faster estimates only if fine-root populations have varying rates of root mortality and decomposition. Our results indicate that a standard definition of fine roots, as those with diameters of <2 mm, is inadequate to determine the most dynamic portion of the root population. Recognition of the variability in fine-root dynamics is necessary to obtain better estimates of belowground C inputs.

5.
Nature ; 408(6814): 789-90, 2000 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-11130707
6.
Glob Chang Biol ; 6(S1): 174-184, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35026928

RESUMEN

To reconcile observations of decomposition rates, carbon inventories, and net primary production (NPP), we estimated long-term averages for C exchange in boreal forests near Thompson, Manitoba. Soil drainage as defined by water table, moss cover, and permafrost dynamics, is the dominant control on direct fire emissions. In upland forests, an average of about 10-30% of annual NPP was likely consumed by fire over the past 6500 years since these landforms and ecosystems were established. This long-term, average fire emission is much larger than has been accounted for in global C cycle models and may forecast an increase in fire activity for this region. While over decadal to century times these boreal forests may be acting as slight net sinks for C from the atmosphere to land, periods of drought and severe fire activity may result in net sources of C from these systems.

7.
Proc Natl Acad Sci U S A ; 94(16): 8284-91, 1997 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-11607735

RESUMEN

Recent improvements in our understanding of the dynamics of soil carbon have shown that 20-40% of the approximately 1,500 Pg of C stored as organic matter in the upper meter of soils has turnover times of centuries or less. This fast-cycling organic matter is largely comprised of undecomposed plant material and hydrolyzable components associated with mineral surfaces. Turnover times of fast-cycling carbon vary with climate and vegetation, and range from <20 years at low latitudes to >60 years at high latitudes. The amount and turnover time of C in passive soil carbon pools (organic matter strongly stabilized on mineral surfaces with turnover times of millennia and longer) depend on factors like soil maturity and mineralogy, which, in turn, reflect long-term climate conditions. Transient sources or sinks in terrestrial carbon pools result from the time lag between photosynthetic uptake of CO2 by plants and the subsequent return of C to the atmosphere through plant, heterotrophic, and microbial respiration. Differential responses of primary production and respiration to climate change or ecosystem fertilization have the potential to cause significant interrannual to decadal imbalances in terrestrial C storage and release. Rates of carbon storage and release in recently disturbed ecosystems can be much larger than rates in more mature ecosystems. Changes in disturbance frequency and regime resulting from future climate change may be more important than equilibrium responses in determining the carbon balance of terrestrial ecosystems.

8.
Oecologia ; 106(3): 376-381, 1996 May.
Artículo en Inglés | MEDLINE | ID: mdl-28307325

RESUMEN

Paleoecological and geomorphological studies indicate that, during the middle Holocene, there was a predominance of drier conditions with grassy savannahs replacing forests across the South American continent. Modern savannahs are composed mainly of C4 plants and soils developed under this type of vegetation show enrichment in 13C compared to soils under C3 vegetation cover. If soils contain stabilized organic matter formed in the middle Holocene, we hypothesize that former C4 vegetation would be evidenced by a large enrichment of 13C in soil organic matter (SOM). We investigate this possibility examining the depth variation of carbon isotopic composition in 21 soil profiles collected by different researchers at 14 different sites in Brazil. Of these, profiles from only three sites showed a marked increase of 13C with depth (9-10‰ enrichment in δ13C difference between the surface soil and deepest depth); two sites showed intermediate enrichment (4-5‰), and nine sites showed a small enrichment of approximatelly 2.5‰. The majority of sites showing all-C3 derived SOM were in the Amazon region. Possible causes for the absence of a large 13C enrichment with depth are: (1) dominance of C3 rather than C4 grasses in mid-Holocene savannahas, (2) soil profiles did not preserve organic matter derived from mid-Holocene plants, (3) the retreat of forest areas did not occur on a regional scale, but was a much more localized phenomenon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA