Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Plants ; 7(2): 123-128, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33558754

RESUMEN

All crops are the product of a domestication process that started less than 12,000 years ago from one or more wild populations1,2. Farmers selected desirable phenotypic traits (such as improved energy accumulation, palatability of seeds and reduced natural shattering3) while leading domesticated populations through several more or less gradual demographic contractions2,4. As a consequence, the erosion of wild genetic variation5 is typical of modern cultivars, making them highly susceptible to pathogens, pests and environmental change6,7. The loss of genetic diversity hampers further crop improvement programmes to increase food production in a changing world, posing serious threats to food security8,9. Using both ancient and modern seeds, we analysed the temporal dynamics of genetic variation and selection during the domestication process of the common bean (Phaseolus vulgaris) in the southern Andes. Here, we show that most domestic traits were selected for before 2,500 years ago, with no or only minor loss of whole-genome heterozygosity. In fact, most of the changes at coding genes and linked regions that differentiate wild and domestic genomes are already present in the ancient genomes analysed here, and all ancient domestic genomes dated between 600 and 2,500 years ago are highly variable (at least as variable as modern genomes from the wild). Single seeds from modern cultivars show reduced variation when compared with ancient seeds, indicating that intensive selection within cultivars in the past few centuries probably partitioned ancestral variation within different genetically homogenous cultivars. When cultivars from different Andean regions are pooled, the genomic variation of the pool is higher than that observed in the pool of ancient seeds from north and central western Argentina. Considering that most desirable phenotypic traits are probably controlled by multiple polymorphic genes10, a plausible explanation of this decoupling of selection and genetic erosion is that early farmers applied a relatively weak selection pressure2 by using many phenotypically similar but genetically diverse individuals as parents. Our results imply that selection strategies during the past few centuries, as compared with earlier times, more intensively reduced genetic variation within cultivars and produced further improvements by focusing on a few plants carrying the traits of interest, at the cost of marked genetic erosion within Andean landraces.


Asunto(s)
Productos Agrícolas/genética , Productos Agrícolas/historia , Domesticación , Agricultores/psicología , Genoma de Planta , Phaseolus/genética , Argentina , Agricultores/estadística & datos numéricos , Variación Genética , Genotipo , Historia Antigua
2.
Hum Biol ; 77(1): 115-23, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16114820

RESUMEN

Restriction fragment length polymorphisms are good anthropological markers for discriminating geographically distinct populations at both the allele and the haplotype level. Two communities of African ancestry and ladinos, mestizos, and mulattoes living in the Esmeraldas province in northwestern Ecuador were analyzed for three RFLPs (EcoRI, RsaI, and MspI) of the COL1A2 gene. Also, the same markers were studied in a population sample from Spain to compare the allele and haplotype frequencies of the Esmeraldas populations with those of their representative European parental population. Data for the native American and sub-Saharan African founder components were available from the literature. No significant levels of differentiation between the two African Ecuadoran communities emerged from either the frequency analysis of each single marker and all three RFLP markers together or from the AMOVA. The ladinos and mestizos also showed a rather similar distribution of allele and haplotype frequencies, confirming that the two ethnic terms do not correspond to genetically different populations. The comparison with the supposed founding European, sub-Saharan African, and native American populations indicated a large presence of African genes in the gene pool of both communities, with a higher proportion of the Amerindian component in Viche than in Rio Cayapas. The present findings confirm the previous genetic admixture estimates based on nuclear and mitochondrial DNA markers and the demographic data.


Asunto(s)
Población Negra/genética , Colágeno Tipo I/genética , Etnicidad/genética , Genética de Población/estadística & datos numéricos , Polimorfismo de Longitud del Fragmento de Restricción , Alelos , Análisis de Varianza , Ecuador , Femenino , Frecuencia de los Genes , Haplotipos , Humanos , Masculino , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA