Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Drug Chem Toxicol ; 45(2): 560-567, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32106715

RESUMEN

Inhalation of xenobiotics during manufacture process in chrome plating bath produce hazards to workers' health. Chromium (Cr) is a metal widely used by industry, and its hexavalent (VI) form has been classified as mutagenic and carcinogenic. This study aimed to evaluate the occupational risk of exposure to metals in chrome plating workers. Biological monitoring was performed through quantification of Cr, Pb, As, Ni, and V in blood by ICP-MS in 50 male chrome-plating workers from the exposed group and 50 male non-exposed workers. The inflammatory parameters assessed were ß-2 integrin, intercellular adhesion molecule-1 (ICAM-1), and L-selectin expression in lymphocytes. The genotoxicity was evaluated with comet and micronucleus (MN) assays and as a biomarker of oxidative damage the lipid peroxidation (MDA) and protein carbonyl (PCO). The results demonstrated that Cr levels in blood and urine were increased in the exposed group compared to the non-exposed group. Although the biomarkers of exposure proved to be within the levels considered safe in exposed individuals, chrome plating workers presented significantly increase in the percentage of lymphocytes expressing ß-2 integrin, ICAM-1, and L-selectin as well as DNA damage (comet assay) and plasmatic MDA and PCO levels. Therefore, it is possible also assign the injuries caused to lipids, proteins, and DNA assessed due to the increased presence of other metals such as Pb, As, Ni, and V in exposed subjects. These results suggest that exposure to xenobiotics present in the occupational environment in chrome plating industry could play a crucial role toward the inflammation, genetic, and oxidative damage.


Asunto(s)
Exposición Profesional , Cromo/toxicidad , Cromo/orina , Ensayo Cometa , Humanos , Masculino , Metales , Exposición Profesional/efectos adversos , Medición de Riesgo
2.
Environ Sci Pollut Res Int ; 26(2): 1892-1901, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30460648

RESUMEN

The most commonly used solution in chrome plating bath is chromic acid (hexavalent Cr), and a considerable amount of mists is released into the air and consequently produce hazards to workers. Thus, the aim of this study was to evaluate whether the biomarker of exposure to metals, specially Cr levels, presents associations with hematological and biochemical parameters and if they can alter the activity of enzymes that contain thiol groups such as pyruvate kinase, creatine kinase, adenylate kinase, and δ-aminolevulinate dehydratase. Fifty male chrome plating workers were used for exposed group and 50 male non-exposed workers for control group. For that, biological monitoring was performed through quantification of metals on total blood and urine by inductively coupled plasma mass spectrometry (ICP-MS) and enzyme activity was performed by spectrometry in erythrocytes. In addition, chromium levels in water was quantified and ecotoxicology assay was performed with Allium cepa test. The results demonstrated that blood and urinary chromium levels in exposed group were higher than the control group (p < 0.0001). Furthermore, decreased activity of enzymes was found in those that contain thiol groups from exposed group when compared with the control group (p < 0.001). The water analysis did not present a statistical difference between control and exposed groups (p > 0.05), demonstrating that water did not seem to be the source of contamination. In summary, our findings indicated some toxicology effects observed in the exposed group, such as thiol enzyme inhibition, mainly associated with occupational exposure in chrome plating and besides the presence of other metals, and Cr demonstrated to influence the activity of the enzymes analyzed in this research.


Asunto(s)
Biomarcadores/metabolismo , Exposición Profesional/estadística & datos numéricos , Compuestos de Sulfhidrilo/metabolismo , Adulto , Biometría , Cromo , Ecotoxicología , Humanos , Masculino
3.
Arch Environ Contam Toxicol ; 63(3): 453-60, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22864587

RESUMEN

Lead (Pb(2+)) is a heavy metal that has long been used by humans for a wide range of technological purposes, which is the main reason for its current widespread distribution. Pb(2+) is thought to enter erythrocytes through anion exchange and to remain in the cell by binding to thiol groups. Pyruvate kinase (PK) is a thiol-containing enzyme that plays a key role in erythrocyte cellular energy homeostasis. δ-aminolevulinic acid dehydratase (δ-ALAD) is the second enzyme in the heme biosynthetic pathway and plays a role in the pathogenesis of Pb poisoning. Our primary objective was to investigate the effect of Pb(2+) on the activity of the thiolenzymes δ-ALAD and PK and on the concentration of glutathione (GSH), a nonenzymatic antioxidant defense, in erythrocytes from Pb-exposed workers. The study sample comprised 22 male Pb workers and 21 normal volunteers (15 men and 6 women). The Pb-exposed workers were employed in manufacturing and recycling of automotive batteries. Basic red-cell parameters were assayed and total white blood cell counts performed. PK and δ-ALAD activity and blood Pb (BPb) concentrations were determined in all subjects. Pb-exposed individuals had significantly greater BPb levels than controls. Both PK and δ-ALAD activity levels were significantly lower in Pb-exposed individuals than in controls. Pb significantly inhibited PK and δ-ALAD activity in a dose-dependent manner. We found that erythrocyte GSH levels were lower in Pb-exposed individuals than normal volunteers. Pb-exposed individuals had lower values than controls for several red cell parameters (hemoglobin, hematocrit, red blood cell count, mean corpuscular volume). These results suggest that Pb inhibits δ-ALAD and PK activity by interacting with their thiol groups. It is therefore possible that Pb disrupts energy homeostasis and may be linked with decreased glucose metabolism because it affects the heme synthesis pathway in erythrocytes, contributing to the cell dysfunction observed in these in Pb-exposed individuals. These results indicate an apparent dose-effect relationship between PK activity and BPb. PK activity in human erythrocytes can be used for biological monitoring of Pb exposure. Study of the mechanisms by which Pb acts may contribute to greater understanding of the symptoms caused by Pb.


Asunto(s)
Sustancias Peligrosas/toxicidad , Plomo/toxicidad , Exposición Profesional/análisis , Porfobilinógeno Sintasa/metabolismo , Piruvato Quinasa/metabolismo , Adulto , Biomarcadores/metabolismo , Eritrocitos , Glutatión Transferasa/metabolismo , Sustancias Peligrosas/sangre , Humanos , Plomo/sangre , Masculino , Persona de Mediana Edad , Exposición Profesional/estadística & datos numéricos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA