Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Front Cell Neurosci ; 17: 1287089, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026689

RESUMEN

While there is a growing appreciation of three-dimensional (3D) neural tissues (i.e., hydrogel-based, organoids, and spheroids), shown to improve cellular health and network activity to mirror brain-like activity in vivo, functional assessment using current electrophysiology techniques (e.g., planar multi-electrode arrays or patch clamp) has been technically challenging and limited to surface measurements at the bottom or top of the 3D tissue. As next-generation MEAs, specifically 3D MEAs, are being developed to increase the spatial precision across all three dimensions (X, Y, Z), development of improved computational analytical tools to discern region-specific changes within the Z dimension of the 3D tissue is needed. In the present study, we introduce a novel computational analytical pipeline to analyze 3D neural network activity recorded from a "bottom-up" 3D MEA integrated with a 3D hydrogel-based tissue containing human iPSC-derived neurons and primary astrocytes. Over a period of ~6.5 weeks, we describe the development and maturation of 3D neural activity (i.e., features of spiking and bursting activity) within cross sections of the 3D tissue, based on the vertical position of the electrode on the 3D MEA probe, in addition to network activity (identified using synchrony analysis) within and between cross sections. Then, using the sequential addition of postsynaptic receptor antagonists, bicuculline (BIC), 2-amino-5-phosphonovaleric acid (AP-5), and 6-cyano-5-nitroquinoxaline-2,3-dione (CNQX), we demonstrate that networks within and between cross sections of the 3D hydrogel-based tissue show a preference for GABA and/or glutamate synaptic transmission, suggesting differences in the network composition throughout the neural tissue. The ability to monitor the functional dynamics of the entire 3D reconstructed neural tissue is a critical bottleneck; here we demonstrate a computational pipeline that can be implemented in studies to better interpret network activity within an engineered 3D neural tissue and have a better understanding of the modeled organ tissue.

3.
Front Bioeng Biotechnol ; 11: 1193430, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324446

RESUMEN

There is an urgent need to develop new therapies for colorectal cancer that has metastasized to the liver and, more fundamentally, to develop improved preclinical platforms of colorectal cancer liver metastases (CRCLM) to screen therapies for efficacy. To this end, we developed a multi-well perfusable bioreactor capable of monitoring CRCLM patient-derived organoid response to a chemotherapeutic gradient. CRCLM patient-derived organoids were cultured in the multi-well bioreactor for 7 days and the subsequently established gradient in 5-fluorouracil (5-FU) concentration resulted in a lower IC50 in the region near the perfusion channel versus the region far from the channel. We compared behaviour of organoids in this platform to two commonly used PDO culture models: organoids in media and organoids in a static (no perfusion) hydrogel. The bioreactor IC50 values were significantly higher than IC50 values for organoids cultured in media whereas only the IC50 for organoids far from the channel were significantly different than organoids cultured in the static hydrogel condition. Using finite element simulations, we showed that the total dose delivered, calculated using area under the curve (AUC) was similar between platforms, however normalized viability was lower for the organoid in media condition than in the static gel and bioreactor. Our results highlight the utility of our multi-well bioreactor for studying organoid response to chemical gradients and demonstrate that comparing drug response across these different platforms is nontrivial.

4.
J Neural Eng ; 18(4)2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34330113

RESUMEN

Objective.Intracranial neural recordings and electrical stimulation are tools used in an increasing range of applications, including intraoperative clinical mapping and monitoring, therapeutic neuromodulation, and brain computer interface control and feedback. However, many of these applications suffer from a lack of spatial specificity and localization, both in terms of sensed neural signal and applied stimulation. This stems from limited manufacturing processes of commercial-off-the-shelf (COTS) arrays unable to accommodate increased channel density, higher channel count, and smaller contact size.Approach.Here, we describe a manufacturing and assembly approach using thin-film microfabrication for 32-channel high density subdural micro-electrocorticography (µECoG) surface arrays (contacts 1.2 mm diameter, 2 mm pitch) and intracranial electroencephalography (iEEG) depth arrays (contacts 0.5 mm × 1.5 mm, pitch 0.8 mm × 2.5 mm). Crucially, we tackle the translational hurdle and test these arrays during intraoperative studies conducted in four humans under regulatory approval.Main results.We demonstrate that the higher-density contacts provide additional unique information across the recording span compared to the density of COTS arrays which typically have electrode pitch of 8 mm or greater; 4 mm in case of specially ordered arrays. Our intracranial stimulation study results reveal that refined spatial targeting of stimulation elicits evoked potentials with differing spatial spread.Significance.Thin-film,µECoG and iEEG depth arrays offer a promising substrate for advancing a number of clinical and research applications reliant on high-resolution neural sensing and intracranial stimulation.


Asunto(s)
Interfaces Cerebro-Computador , Electrocorticografía , Electrodos Implantados , Humanos , Microtecnología , Espacio Subdural
5.
Nat Commun ; 12(1): 2764, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980852

RESUMEN

The hippocampus is diversely interconnected with other brain systems along its axis. Cycles of theta-frequency activity are believed to propagate from the septal to temporal pole, yet it is unclear how this one-way route supports the flexible cognitive capacities of this structure. We leveraged novel thin-film microgrid arrays conformed to the human hippocampal surface to track neural activity two-dimensionally in vivo. All oscillation frequencies identified between 1-15 Hz propagated across the tissue. Moreover, they dynamically shifted between two roughly opposite directions oblique to the long axis. This predominant propagation axis was mirrored across participants, hemispheres, and consciousness states. Directionality was modulated in a participant who performed a behavioral task, and it could be predicted by wave amplitude topography over the hippocampal surface. Our results show that propagation directions may thus represent distinct meso-scale network computations, operating along versatile spatiotemporal processing routes across the hippocampal body.


Asunto(s)
Hipocampo/fisiología , Ritmo Teta/fisiología , Conducta/fisiología , Electrocorticografía , Humanos , Modelos Neurológicos , Tabique del Cerebro/fisiología , Lóbulo Temporal/fisiología
6.
Lab Chip ; 20(5): 901-911, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-31976505

RESUMEN

Three-dimensional (3D) in vitro models have become increasingly popular as systems to study cell-cell and cell-ECM interactions dependent on the spatial, mechanical, and chemical cues within the environment of the tissue, which is limited in traditional two-dimensional (2D) models. Although electrophysiological recordings of neuronal action potentials through 2D microelectrode arrays (MEAs) are a common and trusted method of evaluating neuronal function, network communication, and response to chemicals and biologicals, there are currently limited options for measuring electrophysiological activity from many locations simultaneously throughout a 3D network of neurons in vitro. Here, we have developed a thin-film, 3D flexible microelectrode array (3DMEA) that non-invasively interrogates a 3D culture of neurons and can accommodate 256 channels of recording or stimulation. Importantly, the 3DMEA is straightforward to fabricate and integrates with standard commercially available electrophysiology hardware. Polyimide probe arrays were microfabricated on glass substrates and mechanically actuated to collectively lift the arrays into a vertical position, relying solely on plastic deformation of their base hinge regions to maintain vertical alignment. Human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes were entrapped in a collagen-based hydrogel and seeded onto the 3DMEA, enabling growth of suspended cells in the matrix and the formation and maturation of a neural network around the 3DMEA probes. The 3DMEA supported the growth of functional neurons in 3D with action potential spike and burst activity recorded over 45 days in vitro. This platform is an important step in facilitating noninvasive electrophysiological characterization of 3D networks of electroactive cells in vitro.


Asunto(s)
Células Madre Pluripotentes Inducidas , Potenciales de Acción , Encéfalo , Humanos , Microelectrodos , Neuronas
7.
Ann Biomed Eng ; 48(2): 780-793, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31741228

RESUMEN

Much of what is currently known about the role of the blood-brain barrier (BBB) in regulating the passage of chemicals from the blood stream to the central nervous system (CNS) comes from animal in vivo models (requiring extrapolation to human relevance) and 2D static in vitro systems, which fail to capture the rich cell-cell and cell-matrix interactions of the dynamic 3D in vivo tissue microenvironment. In this work we have developed a BBB platform that allows for a high degree of customization in cellular composition, cellular orientation, and physiologically-relevant fluid dynamics. The system characterized and presented in this study reproduces key characteristics of a BBB model (e.g. tight junctions, efflux pumps) allowing for the formation of a selective and functional barrier. We demonstrate that our in vitro BBB is responsive to both biochemical and mechanical cues. This model further allows for culture of a CNS-like space around the BBB. The design of this platform is a valuable tool for studying BBB function as well as for screening of novel therapeutics.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Modelos Cardiovasculares , Barrera Hematoencefálica/citología , Comunicación Celular , Línea Celular Transformada , Matriz Extracelular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA