Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 24(6): 2513-2529, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29443447

RESUMEN

Cover crops provide ecosystem services such as storing atmospheric carbon in soils after incorporation of their residues. Cover crops also influence soil water balance, which can be an issue in temperate climates with dry summers as for example in southern France and Europe. As a consequence, it is necessary to understand cover crops' long-term influence on greenhouse gases (GHG) and water balances to assess their potential to mitigate climate change in arable cropping systems. We used the previously calibrated and validated soil-crop model STICS to simulate scenarios of cover crop introduction to assess their influence on rainfed and irrigated cropping systems and crop rotations distributed among five contrasted sites in southern France from 2007 to 2052. Our results showed that cover crops can improve mean direct GHG balance by 315 kg CO2 e ha-1  year-1 in the long term compared to that of bare soil. This was due mainly to an increase in carbon storage in the soil despite a slight increase in N2 O emissions which can be compensated by adapting fertilization. Cover crops also influence the water balance by reducing mean annual drainage by 20 mm/year but increasing mean annual evapotranspiration by 20 mm/year compared to those of bare soil. Using cover crops to improve the GHG balance may help to mitigate climate change by decreasing CO2 e emitted in cropping systems which can represent a decrease from 4.5% to 9% of annual GHG emissions of the French agriculture and forestry sector. However, if not well managed, they also could create water management issues in watersheds with shallow groundwater. Relationships between cover crop biomass and its influence on several variables such as drainage, carbon sequestration, and GHG emissions could be used to extend our results to other conditions to assess the cover crops' influence in a wider range of areas.


Asunto(s)
Agricultura/métodos , Cambio Climático , Productos Agrícolas/crecimiento & desarrollo , Gases de Efecto Invernadero/análisis , Humedad , Movimientos del Agua , Francia , Modelos Teóricos , Estaciones del Año
2.
PLoS One ; 11(8): e0161185, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27532825

RESUMEN

A wide range of species can be sown as cover crops during fallow periods to provide various ecosystem services. Plant establishment is a key stage, especially when sowing occurs in summer with high soil temperatures and low water availability. The aim of this study was to determine the response of germination to temperature and water potential for diverse cover crop species. Based on these characteristics, we developed contrasting functional groups that group species with the same germination ability, which may be useful to adapt species choice to climatic sowing conditions. Germination of 36 different species from six botanical families was measured in the laboratory at eight temperatures ranging from 4.5-43°C and at four water potentials. Final germination percentages, germination rate, cardinal temperatures, base temperature and base water potential were calculated for each species. Optimal temperatures varied from 21.3-37.2°C, maximum temperatures at which the species could germinate varied from 27.7-43.0°C and base water potentials varied from -0.1 to -2.6 MPa. Most cover crops were adapted to summer sowing with a relatively high mean optimal temperature for germination, but some Fabaceae species were more sensitive to high temperatures. Species mainly from Poaceae and Brassicaceae were the most resistant to water deficit and germinated under a low base water potential. Species were classified, independent of family, according to their ability to germinate under a range of temperatures and according to their base water potential in order to group species by functional germination groups. These groups may help in choosing the most adapted cover crop species to sow based on climatic conditions in order to favor plant establishment and the services provided by cover crops during fallow periods. Our data can also be useful as germination parameters in crop models to simulate the emergence of cover crops under different pedoclimatic conditions and crop management practices.


Asunto(s)
Brassicaceae/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Fabaceae/crecimiento & desarrollo , Germinación/fisiología , Calor , Poaceae/crecimiento & desarrollo , Semillas/fisiología , Agua , Clima , Producción de Cultivos/métodos , Sequías , Ecosistema , Nitrógeno/metabolismo , Suelo/química
3.
PLoS One ; 10(3): e0122156, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25789485

RESUMEN

Cover crops can produce ecosystem services during the fallow period, as reducing nitrate leaching and producing green manure. Crop growth rate (CGR) and crop nitrogen acquisition rate (CNR) can be used as two indicators of the ability of cover crops to produce these services in agrosystems. We used leaf functional traits to characterise the growth strategies of 36 cover crops as an approach to assess their ability to grow and acquire N rapidly. We measured specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC) and leaf area (LA) and we evaluated their relevance to characterise CGR and CNR. Cover crop species were positioned along the Leaf Economics Spectrum (LES), the SLA-LDMC plane, and the CSR triangle of plant strategies. LA was positively correlated with CGR and CNR, while LDMC was negatively correlated with CNR. All cover crops could be classified as resource-acquisitive species from their relative position on the LES and the SLA-LDMC plane. Most cover crops were located along the Competition/Ruderality axis in the CSR triangle. In particular, Brassicaceae species were classified as very competitive, which was consistent with their high CGR and CNR. Leaf functional traits, especially LA and LDMC, allowed to differentiate some cover crops strategies related to their ability to grow and acquire N. LDMC was lower and LNC was higher in cover crop than in wild species, pointing to an efficient acquisitive syndrome in the former, corresponding to the high resource availability found in agrosystems. Combining several leaf traits explained approximately half of the CGR and CNR variances, which might be considered insufficient to precisely characterise and rank cover crop species for agronomic purposes. We hypothesised that may be the consequence of domestication process, which has reduced the range of plant strategies and modified the leaf trait syndrome in cultivated species.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Fenómenos Ecológicos y Ambientales , Nitrógeno/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Transporte Biológico , Hojas de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA