Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(19): 13666-13675, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709144

RESUMEN

High-spin organic tetraradicals with significant intramolecular exchange interactions have high potential for advanced technological applications and fundamental research, but examples reported to date exhibit limited stability and processability. In this work, we designed the first tetraradical based on an oxoverdazyl core and nitronyl nitroxide radicals and successfully synthesized it using a palladium-catalyzed cross-coupling reaction of an oxoverdazyl radical bearing three iodo-phenylene moieties with a gold(I) nitronyl nitroxide-2-ide complex in the presence of a recently developed efficient catalytic system. The molecular and crystal structures of the tetraradical were confirmed by single crystal X-ray diffraction analysis. The tetraradical possesses good thermal stability with decomposition onset at ∼125 °C in an inert atmosphere; in a toluene solution upon prolonged heating at 90 °C in air, no decomposition was observed. The resulting unique verdazyl-nitroxide conjugate was thoroughly studied using a range of experimental and theoretical techniques, such as SQUID magnetometry of polycrystalline powders, EPR spectroscopy in various matrices, cyclic voltammetry, and high-level quantum chemical calculations. All collected data confirm the high thermal stability of the resulting tetraradical and quintet multiplicity of its ground state, which makes the synthesis of this important paramagnet a new milestone in the field of creating high-spin systems.

2.
RSC Adv ; 14(9): 6178-6189, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38375011

RESUMEN

Understanding and controlling spin dynamics in organic dyes is of significant scientific and technological interest. The investigation of 2,5-dihydropyrrolo[4,3-c]pyrrolo-1,4-dione derivatives (DPPs), one of the most widely used dyes in many fields, has so far been limited to closed-shell molecules. We present a comprehensive joint experimental and computational study of DPP derivatives covalently linked to two nitronyl nitroxide radicals (DPPTh-NN2). Synthesis, single crystal X-ray diffraction study, photophysical properties, magnetic properties established using steady-state and pulse EPR, fast spin dynamics, and computational modelling using density functional theory and ab initio methods of electronic structure and spectroscopic properties of DPPTh-NN2 are presented. The single-crystal X-ray diffraction analysis of DPPTh-NN2 and computational modeling of its electronic structure suggest that effective conjugation along the backbone leads to noticeable spin-polarization transfer. Calculations using ab initio methods predict a weak exchange interaction of radical centers through a singlet ground state of DPPTh with a small singlet-triplet splitting (ΔEST) of about 25 cm-1 (∼0.07 kcal mol-1). In turn, a strong ferromagnetic exchange interaction between the triplet state of DPPTh chromophore and nitronyl nitroxides (with J ∼ 250 cm-1) was predicted.

3.
Chemistry ; 30(8): e202303456, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37988241

RESUMEN

High-spin organic tetraradicals with significant intramolecular exchange interactions have high potential for advanced technological applications and fundamental research, but those synthesized to date possess limited stability and processability. In this work, we have designed a tetraradical based on the Blatter's radical and nitronyl nitroxide radical moieties and successfully synthesized it by using the palladium-catalyzed cross-coupling reaction of a triiodo-derivative of the 1,2,4-benzotriazinyl radical with gold(I) nitronyl nitroxide-2-ide complex in the presence of a newly developed efficient catalytic system. The molecular and crystal structure of the tetraradical was confirmed by X-ray diffraction analysis. The tetraradical possesses good thermal stability with decomposition onset at ∼150 °C under an inert atmosphere and exhibits reversible redox waves at -0.54 and 0.45 V versus Ag/AgCl. The magnetic properties of the tetraradical were characterized by SQUID magnetometry of polycrystalline powders and EPR spectroscopy in various matrices. The collected data, analyzed by using high-level quantum chemical calculations, confirmed that the tetraradical has a triplet ground state and a nearby excited quintet state. The unique high stability of the prepared triazinyl-nitronylnitroxide tetraradical is a new milestone in the field of creating high-spin systems.

4.
Molecules ; 28(22)2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-38005383

RESUMEN

A simple and highly effective methodology for the cross-coupling of heteroaryl iodides with NN-AuPPh3 at room temperature is reported. The protocol is based on a novel catalytic system consisting of Pd2(dba)3·CHCl3 and the phosphine ligand MeCgPPh having an adamantane-like framework. The present protocol was found to be well compatible with various heteroaryl iodides, thus opening new horizons in directed synthesis of functionalized nitronyl nitroxides and high-spin molecules.

5.
Inorg Chem ; 62(28): 10965-10972, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37399244

RESUMEN

In the present work, the study of the unusual interaction between copper hexafluoroacetylacetonate and the diacetyliminoxyl radical resulted in two discoveries from different fields: the determination of the oxime radical spatial structure and the introduction of an oxime radical into the field of molecular magnetic material design. Oxime radicals are key plausible intermediates in the processes of oxidative CH-functionalization and in the synthesis of functionalized isoxazolines from oximes. Due to the lack of X-ray diffraction data for oxime radicals, the knowledge about their structure is based mainly on indirect approaches, spectroscopic methods (electron paramagnetic resonance and IR), and quantum chemical calculations. The structure of the oxime radical was determined for the first time by stabilizing the diacetyliminoxyl radical in the form of its complex with copper (II) hexafluoroacetylacetonate (Cu(hfac)2), followed by single-crystal X-ray diffraction analysis. Although oxime radicals are known to undergo oxidative coupling with acetylacetonate ligands in transition-metal complexes, a complex is formed with intact hfac ligands. X-ray diffraction studies have shown that the oxime radical is coordinated with copper ions through the oxygen atoms of the carbonyl groups without the direct involvement of the C═N-O• radical moiety. The structure of the coordinated diacetyliminoxyl is in good agreement with the density functional theory (DFT) prediction for free diacetyliminoxyl due to the very weak interaction of the radical molecule with copper ions. Remarkably, both weak ferromagnetic and antiferromagnetic interactions between Cu (II) and oxime radicals have been revealed by modeling the temperature dependence of magnetic susceptibility and confirmed by DFT calculations, rendering diacetyliminoxyl a promising building block for the design of molecular magnets.

6.
J Org Chem ; 88(15): 10355-10370, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36198196

RESUMEN

A special series of nitronyl nitroxides was synthesized: 2-(benzimidazol-2'-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyls mono-, di-, tri-, or tetrafluorinated on the benzene ring. The structure of all paramagnets was unambiguously confirmed by single-crystal X-ray diffraction. It was found that in crystals, the radicals are assembled into chains due to intermolecular H-bonds between the benzimidazole moiety (H-bond donor) and the nitronyl nitroxide group or benzimidazole ring (H-bond acceptor). The magnetic properties of nitronyl nitroxides depend on the type of binding of radicals by H-bonds. The magnetic motif of 4-fluoro-, 5-fluoro-, 4,6-difluoro-, 4,5,6-trifluoro-, 4,5,7-trifluoro-, and 4,5,6,7-tetrafluoro-derivatives, as well as the nonfluorinated compound, consists of ferromagnetic chains (J/kB ≈ 20-40 K) formed by the McConnell type I mechanism. In the 5,6-difluoro- and 4,5-difluoro-derivatives, the distances between the paramagnetic centers are large, as a result of which the exchange interactions are weak. According to cyclic voltammetry, paramagnets are oxidized reversibly, while their reduction is a quasi-reversible electron transfer (EC mechanism); experimental redox potentials of radicals correlate well with the calculated values. Quantum chemical assessment of the acidity of benzimidazolyl-substituted nitronyl nitroxides revealed that the introduction of fluorine atoms into the benzene ring enhances the acidity of the paramagnets by more than 5 orders of magnitude.

7.
Chemistry ; 29(6): e202203118, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36259387

RESUMEN

Nitronyl nitroxides are functional building blocks in cutting-edge research fields, such as the design of molecular magnets, the development of redox and photoswitchable molecular systems and the creation of redox-active components for organic and hybrid batteries. The key importance of the nitronyl nitroxide function is to translate molecular-level-optimized structures into nano-scale devices and new technologies. In spite of great importance, efficient and versatile synthetic approaches to these compounds still represent a challenge. Particularly, methods for the direct introduction of a nitronyl nitroxide moiety into aromatic systems possess many limitations. Here, we report gold derivatives of nitronyl nitroxide that can enter Pd(0)-catalysed cross-coupling reactions with various aryl bromides, affording the corresponding functionalized nitronyl nitroxides. Based on the high thermal stability and enhanced reactivity in catalytic transformation, a new reagent is suggested for the synthesis of radical systems via a universal cross-coupling approach.

8.
Molecules ; 27(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35630726

RESUMEN

Spiro-substituted nitroxyl biradicals are widely used as reagents for dynamic nuclear polarization (DNP), which is especially important for biopolymer research. The main criterion for their applicability as polarizing agents is the value of the spin-spin exchange interaction parameter (J), which can vary considerably when different couplers are employed that link the radical moieties. This paper describes a study on biradicals, with a ferrocene-1,1'-diyl-substituted 1,3-diazetidine-2,4-diimine coupler, that have never been used before as DNP agents. We observed a substantial difference in the temperature dependence between Electron Paramagnetic Resonance (EPR) spectra of biradicals carrying either methyl or spirocyclohexane substituents and explain the difference using Density Functional Theory (DFT) calculation results. It was shown that the replacement of methyl groups by spirocycles near the N-O group leads to an increase in the contribution of conformers having J ≈ 0. The DNP gain observed for the biradicals with methyl substituents is three times higher than that for the spiro-substituted nitroxyl biradicals and is inversely proportional to the contribution of biradicals manifesting the negligible exchange interaction. The effects of nucleophiles and substituents in the nitroxide biradicals on the ring-opening reaction of 1,3-diazetidine and the influence of the ring opening on the exchange interaction were also investigated. It was found that in contrast to the methyl-substituted nitroxide biradical (where we observed the ring-opening reaction upon the addition of amines), the ring opening does not occur in the spiro-substituted biradical owing to a steric barrier created by the bulky cyclohexyl substituents.


Asunto(s)
Ciclohexanos , Óxidos de Nitrógeno , Espectroscopía de Resonancia por Spin del Electrón
9.
Phys Chem Chem Phys ; 24(7): 4475-4484, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35113093

RESUMEN

Triplet states of photoexcited organic molecules are promising spin labels with advanced spectroscopic properties for pulsed dipolar electron paramagnetic resonance (PD EPR) spectroscopy. Recently proposed triplet fullerene labels have shown great potential for double electron-electron resonance (DEER) distance measurements as "observer spins" due to a high quantum yield of the triplet state, hyperpolarization and relatively narrow EPR spectra. Here, we demonstrate the applicability of fullerene labels to other PD EPR techniques, such as relaxation induced dipolar modulation enhancement (RIDME) and laser induced magnetic dipolar spectroscopy (LaserIMD). In particular, a specific contaminating signal in LaserIMD experiments was observed, explained and mitigated. Comparative analyses of the signal-to-noise (SNR) ratios were performed for all employed methods. DEER on the fullerene-triarylmethyl pair shows the best performance, which allows state-of-the-art DEER acquisition at 100 nM with a SNR of ∼35 within reasonable 42 hours.


Asunto(s)
Fulerenos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Marcadores de Spin
10.
Chem Sci ; 12(11): 4154-4161, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34163688

RESUMEN

The nature of plasmon interaction with organic molecules is a subject of fierce discussion about thermal and non-thermal effects. Despite the abundance of physical methods for evaluating the plasmonic effects, chemical insight has not been reported yet. In this contribution, we propose a chemical insight into the plasmon effect on reaction kinetics using alkoxyamines as an organic probe through their homolysis, leading to the generation of nitroxide radicals. Alkoxyamines (TEMPO- and SG1-substituted) with well-studied homolysis behavior are covalently attached to spherical Au nanoparticles. We evaluate the kinetic parameters of homolysis of alkoxyamines attached on a plasmon-active surface under heating and irradiation at a wavelength of plasmon resonance. The estimation of kinetic parameters from experiments with different probes (Au-TEMPO, Au-SG1, Au-SG1-TEMPO) allows revealing the apparent differences associated with the non-thermal contribution of plasmon activation. Moreover, our findings underline the dependency of kinetic parameters on the structure of organic molecules, which highlights the necessity to consider the nature of organic transformations and molecular structure in plasmon catalysis.

11.
J Am Chem Soc ; 143(21): 8164-8176, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34019759

RESUMEN

Thermally resistant air-stable organic triradicals with a quartet ground state and a large energy gap between spin states are still unique compounds. In this work, we succeeded to design and prepare the first highly stable triradical, consisting of oxoverdazyl and nitronyl nitroxide radical fragments, with a quartet ground state. The triradical and its diradical precursor were synthesized via a palladium-catalyzed cross-coupling reaction of diiodoverdazyl with nitronyl nitroxide-2-ide gold(I) complex. Both paramagnetic compounds were fully characterized by single-crystal X-ray diffraction analysis, superconducting quantum interference device magnetometry, EPR spectroscopy in various matrices, and cyclic voltammetry. In the diradical, the verdazyl and nitronyl nitroxide centers demonstrated full reversibility of redox process, while for the triradical, the electrochemical reduction and oxidation proceed at practically the same redox potentials, but become quasi-reversible. A series of high-level CASSCF/NEVPT2 calculations was performed to predict inter- and intramolecular exchange interactions in crystals of di- and triradicals and to establish their magnetic motifs. Based on the predicted magnetic motifs, the temperature dependences of the magnetic susceptibility were analyzed, and the singlet-triplet (135 ± 10 cm-1) and doublet-quartet (17 ± 2 and 152 ± 19 cm-1) splitting was found to be moderate. Unique high stability of synthesized verdazyl-nitronylnitroxide triradical opens new perspectives for further functionalization and design of high-spin systems with four or more spins.

12.
Inorg Chem ; 60(8): 5523-5537, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33826845

RESUMEN

Aerobic reactions of iron(III), nickel(II), and manganese(II) chlorides with formaldoxime cyclotrimer (tfoH3) and 1,4,7-triazacyclononane (tacn) produce indefinitely stable complexes of general formula [M(tacn)(tfo)]Cl. Although the formation of formaldoxime complexes has been known since the end of 19th century and applied in spectrophotometric determination of d-metals (formaldoxime method), the structure of these coordination compounds remained elusive until now. According to the X-ray analysis, [M(tacn)(tfo)]+ cation has a distorted adamantane-like structure with the metal ion being coordinated by three oxygen atoms of deprotonated tfoH3 ligand. The metal has a formal +4 oxidation state, which is atypical for organic complexes of iron and nickel. Electronic structure of [M(tacn)(tfo)]+ cations was studied by XPS, NMR, cyclic (CV) and differential pulse (DPV) voltammetries, Mössbauer spectroscopy, and DFT calculations. Unusual stabilization of high-valent metal ion by tfo3- ligand was explained by the donation of electron density from the nitrogen atom to the antibonding orbital of the metal-oxygen bond via hyperconjugation as confirmed by the NBO analysis. All complexes [M(tacn)(tfo)]Cl exhibited high catalytic activity in the aerobic dehydrogenative dimerization of p-thiocresol under ambient conditions.

13.
Molecules ; 25(22)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228185

RESUMEN

New stable polyfluorinated nitroxide radicals for use in cross-coupling reactions, namely, N-tert-butyl-N-oxyamino-2,3,5,6-tetrafluoro-4-iodobenzene and N-tert-butyl-N-oxyamino-2,3,5,6-tetrafluoro-4-ethynylbenzene, were prepared from perfluoroiodobenzene. The reaction of the polyfluoro derivative with tert-butylamine under autoclaving conditions leading to the formation of N-tert-butyl-2,3,5,6-tetrafluoro-4-iodoaniline proved to be the key stage of the whole process. The fluorinated tert-butyl iodophenyl nitroxide was found to form in a solid state via N-O···I halogen bonds, a one-dimensional assembly of the radicals. The acceptor role of the nitroxide group in the halogen bonding changes to a donor role when the nitroxide reacts with Cu(hfac)2. In the last case, zero-dimensional assembly prevails, giving a three-spin complex with axial coordinated nitroxide groups and, as a consequence, causing ferromagnetic intramolecular exchange interactions between Cu(II) and radical spins.


Asunto(s)
Halogenación , Compuestos Orgánicos/química , Espectroscopía de Resonancia por Spin del Electrón , Conformación Molecular , Óxidos de Nitrógeno/química , Difracción de Rayos X
14.
Angew Chem Int Ed Engl ; 59(46): 20704-20710, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-32715591

RESUMEN

Thermally stable organic diradicals with a triplet ground state along with large singlet-triplet energy gap have significant potential for advanced technological applications. A series of phenylene-bridged diradicals with oxoverdazyl and nitronyl nitroxide units were synthesized via a palladium-catalyzed cross-coupling reaction of iodoverdazyls with a nitronyl nitroxide-2-ide gold(I) complex with high yields. The diradicals exhibit high stability and do not decompose in an inert atmosphere up to 180 °C. For the diradicals, both substantial AF (ΔEST ≈-64 cm-1 ) and FM (ΔEST ≥25 and 100 cm-1 ) intramolecular exchange interactions were observed. The sign of the exchange interaction is determined both by the bridging moiety (para- or meta-phenylene) and by the type of oxoverdazyl block (C-linked or N-linked). Upon crystallization, diradicals with the triplet ground state form unique one-dimensional exchange-coupled chains with strong intra- and weak inter-diradical ferromagnetic coupling.

15.
Molecules ; 25(11)2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545156

RESUMEN

A new synthetic pathway to diradical organic systems is proposed. The effectiveness of this approach was exemplified by the synthesis of a new nitroxide diradical. An interaction of perfluorobiphenyl with lithium tert-butylamide, followed by oxidation of the thusly formed N4,N4'-di-tert-butyl-2,2',3,3',5,5',6,6'-octafluorobiphenyl-4,4'-diamine with meta-chloroperoxybenzoic acid, led to the polyfluorinated nitroxide diradical, N,N'-(perfluorobiphenyl-4,4'-diyl)bis(N-tert-butyl(oxyl)amine), with a good total yield. The polyfluorinated diradical is stable and can be isolated in free form and completely characterized. The structure of the nitroxide diradical was proved by single-crystal X-ray diffraction analysis. According to the X-ray diffraction data, the diradical is considerably twisted: dihedral angles between the planes of the nitroxide groups and aromatic cycles are 65.1° and 69.5°, and between aromatic cycles 52.6°. Quantum chemical calculations predict well-balanced size of both intramolecular and intermolecular exchange interactions with J from -2.65 to -1.14 cm-1.


Asunto(s)
Óxidos de Nitrógeno/síntesis química , Halogenación , Modelos Químicos , Estructura Molecular , Óxidos de Nitrógeno/química , Puntos Cuánticos , Difracción de Rayos X
16.
Molecules ; 25(7)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32224961

RESUMEN

In contrast to diradicals connected by alternant hydrocarbons, only a few studies have addressed diradicals connected by nonalternant hydrocarbons and their heteroatom derivatives. Here, the synthesis, structure, and magnetic properties of pyrrole-2,5-diyl-linked bis(nitronyl nitroxide) and bis(iminonitroxide) diradicals are described. The diradicals show characteristic electron spin resonance spectra in dilute glassy solutions, from which conclusions about the presence of distinct conformations, their symmetry, and interspin distance were made. X-ray diffraction analysis of the diradicals revealed that paramagnetic moieties lie in the plane of the pyrrole ring, because of the formation of an intramolecular hydrogen bond, ONO…HN, with O…H distances of 2.15-2.23 Å. The N-O groups participating in the formation of H-bonds have greater bond lengths (~1.29 Å) as compared with nonparticipating groups (~1.27 Å). The nitronyl nitroxide and iminonitroxide diradicals showed an intramolecular antiferromagnetic interaction, with J = -77.3 and -22.2 cm-1, respectively (H = -2JS1S2).


Asunto(s)
Óxidos de Nitrógeno/química , Algoritmos , Técnicas de Química Sintética , Espectroscopía de Resonancia por Spin del Electrón , Fenómenos Magnéticos , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Óxidos de Nitrógeno/síntesis química , Pirroles/química
17.
Molecules ; 24(24)2019 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-31817965

RESUMEN

The interaction of octafluorotoluene (1a), as well as pentafluorobenzonitrile (1b) with tert-butylamine, followed by the oxidation of thus formed tert-butylanilines (2a,b) with meta-chloroperoxybenzoic acid led to functionalized perfluorinated phenyl tert-butyl nitroxides [namely, 4-(N-tert-butyl(oxyl)amino)heptafluorotoluene (3a) and 4-(N-tert-butyl(oxyl)amino)tetrafluorobenzonitrile (3b)] with nearly quantitative total yields. The molecular and crystal structures of nitroxide 3a were proved by single crystal X-ray diffraction analysis. The radical nature of both nitroxides was confirmed by ESR data. The interaction of Cu(hfac)2 with the obtained nitroxides 3a,b gave corresponding trans-bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato-κ2O,O')bis{4-(N-tert-butyl(oxyl)amino)perfluoroarene-κO}copper (II) complexes ([Cu(hfac)2(3a)2] and [Cu(hfac)2(3b)2]). X-ray crystal structure analysis showed square bipyramid coordination of a centrally symmetric Cu polyhedron with the axial positions occupied by oxygen atoms of the nitroxide groups. Magnetic measurements revealed intramolecular ferromagnetic exchange interactions between unpaired electrons of Cu(II) ions and paramagnetic ligands, with exchange interaction parameters JCu-R reaching 53 cm-1.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Fluorocarburos/química , Cristalografía por Rayos X , Halogenación , Ligandos , Estructura Molecular , Oxidación-Reducción , Oxígeno/química
18.
Angew Chem Int Ed Engl ; 58(38): 13271-13275, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31322814

RESUMEN

Precise nanoscale distance measurements by pulsed electron paramagnetic resonance (EPR) spectroscopy play a crucial role in structural studies of biomolecules. The properties of the spin labels used in this approach determine the sensitivity limits, attainable distances, and proximity to biological conditions. Herein, we propose and validate the use of photoexcited fullerenes as spin labels for pulsed dipolar (PD) EPR distance measurements. Hyperpolarization and the narrower spectrum of fullerenes compared to other triplets (e.g., porphyrins) boost the sensitivity, and superior relaxation properties allow PD EPR measurements up to a near-room temperature. This approach is demonstrated using fullerene-nitroxide and fullerene-triarylmethyl pairs, as well as a supramolecular complex of fullerene with nitroxide-labeled protein. Photoexcited triplet fullerenes can be considered as new spin labels with outstanding spectroscopic properties for future structural studies of biomolecules.

19.
J Mol Model ; 25(3): 58, 2019 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-30737560

RESUMEN

Fine-tuning of magnetic states via an understanding of spin injection on the edge of graphene nanoribbons should allow for greater flexibility of the design of graphene-based spintronics. On the basis of calculations, we predict that coupling constants of the exchange interaction in the series of nitroxide-functionalized ribbon compounds are antiferromagnetic across the ribbons with values 0.2-0.4 cm-1 and ferromagnetic along the ribbon with absolute values from 0.05 to 0.07 cm-1. Such interacting nitroxide groups induce spin polarization of the edge states of stable graphene nanoribbons. Graphical abstract Exchange coupling constants inducing spin polarization in graphene nanoribbons functionalized with nitroxides.

20.
RSC Adv ; 9(44): 25776-25789, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35530086

RESUMEN

Because the C-ON bond homolysis rate constant k d is an essential parameter of alkoxyamine reactivity, it is especially important to tune k d without a major alteration of the structure of the molecule. Recently, several approaches have become known, e.g., protonation of functional groups and formation of metal complexes. In this paper, coordination reactions of [Zn(hfac)2(H2O)2] with a series of new SG1-based alkoxyamines affording complexes with different structures are presented. The k d values of the complexed forms of the alkoxyamines were compared to those of free and protonated ones to reveal the contribution of the electron-withdrawing property and structure stabilization. Together with previously published data, this work provides clues to the design of alkoxyamines that can be effectively activated upon coordination with metal ions. Furthermore, our results provide insight into the mechanism underlying the influence of complexation on the reactivity of alkoxyamines. This led us to describe different types of coordination: intramolecular in nitroxyl fragment, intramolecular in alkyl fragment, intramolecular between alkyl and nitroxyl fragment, and intermolecular one. All of them exhibit different trends which are dramatically altered by changes in conformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA